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Abstract. We present a new microphysical model for the vapor growth and aspect 
ratio evolution of faceted, hexagonal ice crystals in the atmosphere. Our model 
is based on a novel, efficient numerical method for solving Laplace's equation for 
steady state diffusion on the surface of a three-dimensional hexagonal prism, and 
also takes into account the surface kinetic processes of crystal growth. We do not 
include ventilation, so our model is limited to stationary crystals or falling crystals 
smaller than 100/•rn. We calculate a self-consistent solution for the distribution of 
the supersaturation and the condensation coe•cient on each crystal face, for several 
different assumptions regarding the crystal growth mechanism and ice surface 
properties. We use this model to predict the aspect ratios expected for faceted ice 
crystals over a range of temperatures and supersaturations, as well as to estimate 
the conditions for which faceted growth becomes unstable and the crystals become 
hollowed or dendritic. We compare these predictions to observed features of ice 
cloud crystals to infer some microphysical characteristics of ice crystals and their 
temperature dependence. We also compare our predicted mass growth rates with 
those of the capacitance model for spheres and ellipsoids to look at the effects of 
shape and surface kinetics. Finally, we insert the single-particle code into a simple 
parcel cloud model to investigate the feedbacks between crystal surface kinetics, 
shape, and the thermodynamic properties of clouds. 

1. Introduction' Habit Evolution in 

Vapor-Grown Ice Crystals 

The shapes of ice crystals in the atmosphere, and 
the physical processes that determine them, have long 
been subjects of great interest, not only because of their 
importance for radiative transfer [Vogelmann and Ack- 
errnan, 1995; Baker, 1997] and cloud particle dynam- 
ics [Jensen et al., 1994b], but also because of their in- 
herent beauty and complexity [Frank, 19821 . The pri- 
mary growth habit, or shape, of a faceted ice crystal is 
a hexagonal prism with two basal faces and six prism 
faces. The aspect ratio is defined as I' -- c/a, where 2c is 
the height, or distance between the basal faces, and 2a 
is the width, or distance between opposite prism faces. 
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Many laboratory and field observations have found that 
the aspect ratio and habit of a vapor-grown crystal 
depend on the ambient temperature (Too) and super- 
saturation (rroo). Planar crystals (F < 1) form when 
T• > -4øC or -10øC> Too > -22øC, and columnar 

. 

crystals (F > 1) form when-4øC> To• > -10øC or 
Te• < -22øC. At a given temperature, observed crys- 
tal shapes are increasingly lacunar or dendritic at higher 
supersaturations: Columns develop hollows at each end, 
and plates typically have six separate arms or branches. 
These observational results have been summarized in a 

number of habit diagrams, for example the Kobayashi 
[1965] diagram shown in Figure 1, which all show similar 
shape variations as a function of temperature and super- 
saturation [Nakaya et al., 1958; Mason, 1971; Magono 
and Lee, 1966]. However, there are also observations 
which do not fit neatly into these diagrams. Hexagonal 
ice crystals collected from the atmosphere at tempera- 
tures below-22øC often consist of a mixture of plates 
and columns [Curry et al., 1990; Heymsfield et al., 1990; 
Korolev et al., 1999]. It is difScu!t to interpret these ob- 
servations because in the atmosphere crystals may ex- 
perience different temperature regimes during growth 
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Figure 1. Habit diagram, based on laboratory observations, reproduced from Kobayashi [1961]. 

due to sedimentation and transport. However in a lab- 
oratory study of ice particles grown at constant temper- 
atures, suspended in an electrodynamic balance [Bacon 
ei al., 2000], plate-like crystals predominate between- 
20øC and-40øC, where most habit diagrams indicate 
columns. Ice crystals with I' _> 10 have been observed 
in clear-sky precipitation in Antarctica, together with 
three, four, five, and six-sided plates at temperatures 
around-35øC [Kikuchi and ttoga•, 1979]. We should 
also note that many of the larger ice particles found 
in the atmosphere are aggregates of many individual 
crystals (snowflakes), or polycrystalline with a common 
origin (bullet rosettes, side planes) [e.g., Heymst•eJd el• 
a]., 1990], but in this paper we will consider only single 
crystals. 

The primary physical processes responsible for both 
the shape and growth rate of an ice crystal are (1) 
macroscopic processes such as vapor and heat diffu- 
sion in the environment surrounding the crystal and 
(2) molecular-scale surface processes of incorporation 
of the vapor molecules into the crystal. Secondary pro- 
cesses such as ventilation and coagulation may become 
important for large ice crystals, but will not be con- 
sidered in this paper due to the difficulties already in- 
volved in modeling diffusion and surface kinetics for 
three-dimensional hexagonal crystal growth. Numeri- 
cal models of the distributions of diffusing quantities 
outside an object of complex shape tend to be unwieldy 
and slow. More important, the molecular-scale physics 
of the incorporation process is not well understood, and 

we have very few measurements of the microscopic sur- 
face parameters over the tropospherically relevant tem- 
perature range. In most ice crystal growth models in 
the atmospheric literature, crystal shapes are usually 
approximated as ellipsoids of fixed, or temperature- 
dependent aspect ratio, and the surface kinetics are 
neglected. Yokoyarna and Kuroda [1989] presented a 
model in which crystal surface kinetics and shape evo- 
lution are treated in detail, but only for two-dimensional 
crystals. More recently, Libbrecht [1999] has developed 
an interesting method for modeling the growth of three 
dimensional cylindrical crystals which includes a pa- 
rameterized treatment of surface kinetics, but he has 
not explicitly modeled the crystal growth mechanism(s) 
or included latent heating effects. 

Although it is not yet possible to construct a complete 
theory or even a general numerical model of the vapor 
growth of ice crystals, the importance of this process in 
the atmosphere motivates us to take the first step by 
constructing a simplified model, in which we (1) con- 
sider only simple, faceted crystal shapes and (2) use 
empirical values for ice surface parameters whose tem- 
perature dependence is not understood. Because the 
accuracy and completeness of this empirical data are 
limited, we have tried to strike a balance in the pre- 
sentation of our model predictions, using the available 
data when possible to make our "current best guess", 
but also stating our results in terms of the parame- 
ters that are now uncertain, in order that new and 
improved measurements can be used in the future to 
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refine our predictions. Our model is based on earlier ambient vapor mixing ratio is given by 
crystal growth models with coupled diffusion and sur- 
face kinetics [Nelson, 1994; Nelson and Baker, 1996; 
Wood, 1999] combined with a novel, efficient numerical 
method for solving Laplace's equation on the surface of 
a three-dimensional hexagonal prism developed for this 
application primarily by one of us (D.C.). 

The goals of this paper are (1) to present an efficient 
numerical model for calculation of the evolution of sin- 

gle, vapor-grown faceted ice crystals, (2) to delineate 
the thermodynamic regimes in which ice crystals are 
expect. ed to grow as faceted crystals, (3) to infer micro- 
physical growth processes from observed crystal shapes, 
and (4) to insert the single-particle code into a simple 
cloud model and test its predictions against those of 
simpler ice crystal growth models. 

In section 2 we present the mathematical problem of 
faceted crystal growth, describe our numerical method 
for its solution, and discuss the limitations of the model. 
In section 3 we describe the surface kinetic processes 
and microphysical input parameters that determine the 
condensation coefficients. In section 4 we present some 
model results inc!uding the calculated distributions of 
supersaturation and condensation coefficient on the sur- 
faces of three-dimensional hexagonal crystals and their 
linear and mass growth rates. We compare our pre- 
dicted mass growth rates with those of two other ice 
crystal growth models commonly used in cloud models, 
namely, the equivalent sphere and capacitance models. 
We also use our model to predict the growth shapes ex- 
pected for crystals with different assumed growth mech- 
anisms in a range of environments and to define the 
conditions for stability of faceted crystals. In section 
5 we apply these results to observed features of crys- 
tals in clouds to infer microphysical characteristics of 
ice crystals at low temperatures where some parame- 
ters have not been measured (below -15øC). We use 
the inferred microphysical parameters and our model 
to derive in section 6 the first model-predicted habit di- 
agram for the range -30øC •_ T •_ 0øC, for several 
different assumptions regarding the operative crystal 
growth mechanism(s). In section 7 we insert the single- 
particle growth code into a simple parcel cloud model to 
investigate the feedbacks between crystal surface kinet- 
ics, crystal shape, and the thermodynamic properties 
of clouds. A summary and discussion of our results are 
given in the final section. • 

(p- 

0.622 eeq(Too) (1 + era), 
P 

where • is molecular weight and eeq is the equilibrium 
vapor pressure of ice, assumed here to be much less 
than p. The growing crystal is a sink for water va- 
por and reduces the vapor mixing ratio in the vicin- 
ity of the crystal. For stationary ice crystals, we have 
quasi-steady state diffusion and the vapor field obeys 
Laplace's equation, 

V•q = 0. (2) 

For faceted growth the vapor flux to the crystal is uni- 
form along each f•ce [Nelson, 1994]. For notation•l con- 
venience we use the subscript i to number the crystallo- 
graphically distinct faces. For symmetric crystals, there 
are two classes of faces; i - 1 corresponds to the basal, 
or c f•ces, and i • 2 corresponds to the prism, or a 
faces. Then the condition of uniform flux to the ith 

face can be expressed as 

Oq = F•i i- 1,2, (3) PairDv(T,P) • 
where pai• is the density of air, 0( )/On denotes dif- 
ferentiation with respect to the direction norm• to the 
surface, and the flux values Fv,i are unspecified con- 
stant scalars representing the vapor flux to the two sets 
of crystal faces. D•(T, p) (m •/s) is the vapor diffusivity, 
given by 

D•(T,p) - 2.0 x 10 -• T •/• 
P 

where T0 - 273.13 • K and p0 = 10!, 300 Pa [Pruppacher 
and Klett, 1997]. For each set of environmental con- 
ditions, we assume a uniform value of Dv(T,p), com- 
puted using T = T• and a constant pressure p, •- 
sumed to be the ambient pressure. For notational con- 
venience this constant value will be referred to as simply 
9• - 9•(•,p). 

These equations provide flux (or Neumann) boundary 
conditions of the form 

Oq F•,• = on face i, i - 1, 2, (5) 
On PairDv' 

2. The Mathematical Model and 
Numerical Solution 

2.1. Modeling Ice Crystal Growth From the 
Vapor 

Consider an ice crystal growing in an environment at 
ambient temperature Tc•, total pressure p, vapor pres- 
sure ec•, and supersaturation cry, where the subscript 
c• indicates parameter values far from the crystal. The 

for (2). 
To determine the unknown constants F•,,i, we require 

that the flux rate of vapor due to diffusion of vapor to 
the crystal surface equal the rate of molecular incorpo- 
ration due to kinetic processes on the surface. At each 
point x = (x, y, z) on the crystal surface, this condition 
can be expressed as 

c•q •th 
pairDV •nn = pairqeq (T(x), p)-•-ai(a(x) )a(x), (6) 
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where the left-hand side is an expression for the diffusive 
vapor flux and the right-hand side an expression for the 
kinetic vapor flux. The functions c•i(cr), i - 1,2, are 
the condensation coefficients for each face which will 
be derived in section 3, and •tn is the component of 
the thermal velocity of the molecules directed toward 
the crystal surface (given by v/SkT/7rm). The variable 
(r(x) is the spatially varying surface supersaturation, 
given by 

or(x) -- q(x) - qeq (T (x), p) qeq(T(x),p) ' (7) 
Since we are imposing a uniform flux across each face, 

we have only two unknown flux values, Fv,• and F•,2, 
to determine. Therefore we impose the flux condition 
(6) at only two locations on the crystal surface. Math- 
ematically, attempting to impose (6) at more than two 
locations would lead to •n overdetermined system of 
equations for the unknown fluxes Fv,i. Physically, re- 
quiring the condition to hold on more than one location 
on each face would imply that the growth rate of the 
face is controlled by vapor fluxes at more than one lo- 
cation, contradicting our assumption of uniform faceted 
growth. Owing to the symmetry of the crystal, it is suf- 
ficient to choose a set of symmetric points x• on each 
of the c faces and x.• on each of the a faces at which we 
will impose condition (6). We will henceforth label all 
variables at these points by an asterisk. 

Imposing (6) at the two sets of locations x? and ma- 
nipulating (6) leads to an equation of the form 

Oq _ qeq(Ti*,p)•th . . _ 
con 4D • a i (c r; ) cri, i 1 2, (8) 

where for simplicity we write cr• instead of cr(x•). If we 
view the fluxes Fv,i as unknowns and use equation (5), 
we can determine values F•,,i which lead to a solution 
of Laplace's equation (2) which satisfies (8) at the two 

* i = 1,2. In section 22 we will describe locations xi , . 
in detail how we numerically determine these unknown 
flux values Fv,i. 

2.1.1. Temperature variations at the surface 
of the crystal. Phase change at the crystal surface 
liberates latent heat, which modifies the temperature 
near the crystal surface and thus the local supersat- 
uration. For this reason we also want to be able to 

determine the spatial distribution of the temperature 
field on the crystal surface. As with the mixing ratio 
q, the rate of heat diffusion to the crystal surface hap- 
pens on a much faster timescale than the growth of the 
crystal, so we can assume that for the purposes of com- 
puting flux rates to the surface, the temperature field 
is in quasi-steady state and satisfies 

V•T- 0. (0) 

Furthermore, we make the assumption that the diffu- 
sion of heat in the crystal is much faster than in the 
v•por, and thus that the bulk crystal is isothermal and 

that temperature variations on the surface are not re- 
flected in the bulk crystal. This is a common assump- 
tion that allows us to avoid the more complicated prob- 
lem of solving for temperature in both the crystal and 
surrounding environment. 

The far-field temperature is given by Too, and the 
boundary conditions at the crystal surface are given in 
terms of the conductive heat flux FT,i to each face. This 
flux can be related to the vapor flux Fv,i by the expres- 
sion 

LsubF•,i + Fr, i - 0, i - 1, 2, (10) 

where L,u, (J kg -•) is the latent heat of sublimation, 
and F•,i (kg m -2 s -•) is the diffusive vapor flux dis- 
cussed in the previous section. We can write the flux 
FT, i in terms of the normal derivative of the tempera- 
ture as 

OT 

FT, i -- • c•n' on face i, i = 1, 2, (11) 
where • (Wm -x K -x) is the thermal conductivity of 
the surrounding air. Using (10) and (11), we find that 
on the ith faces 

OT -Lsub Fv,i 
--Lsub Pair Dv Oq 

-- •c con' (12) 
so that on the crystal surface the temperature field T(x) 
can be written directly in terms of q(x)' 

T(xi) - Tc• = -Lsubp•i•Dv (q(xi) - q•). (13) 
The spatially varying temperature is used in the com- 
putation of qeq(T,p), which in turn shows up in the 
calculations of or. 

2.1.2. Growth rates of faces. Once we have 

computed the fluxes F•,i, it is a straightforward matter 
to compute the growth velocities of the ith face: 

1 
[q = -- Fv,i. (14) 

Pice 

This growth velocity will then be used to advance the 
interface in a manner described in more detail in the 

following section. 

2.2. A Numerical Solution Method 

We wish to solve (2) subject to the surface boundary 
conditions (3) for the full three-dimensional hexagonal 
crystal. While analytic solution methods are feasible for 
simpler shapes, such as the ellipsoid or cylinder, a fully 
numeric method must be used for the general hexago- 
nal prism. The two main issues involved in determin- 
ing the evolution of the crystal shape are (1) solving 
Laplace's equation on the hexagonal three-dimensional 
crystal, and (2) determining the correct flux conditions 
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2.2.1. A b,)undary integral representation. 
Since we are interested in values of q and fluxes only 
on the surface of the crystal, we formulate Laplace's 
equation as an integral along the boundary of the crys- 
tal surface and solve for the unknown values q(x,y,z) 
on the surface directly. From a numerical point of view, 
the boundary integral approach is convenienent because 
we can handle arbitrary geometries in a straightforward 
manner and, in principle, achieve solutions of arbitrar- 
ily high order of accuracy. Furthermore, when solving 
exterior problems, boundary integral methods have the 
advantage that we do not need to impose boundary con- 
ditions on an artificial far-field boundary. Other meth- 
ods such as finite difference or finite element methods 
would require that one approximate the far-field bound- 
ary at a boundary of a finite computational domain. 

The boundary integral representation of the general 
exterior problem V2q - 0, subject to Oq/On = f over a 
piecewise smooth surface $ is given by 

27rq(P) + q(P') on2 ' I P - P'l dSp, 
fs 1 dSp,, + [2•r- •)(P)] q(P) - f(pt) I P _ P'[ 

where •(P) is the inner solid angle of S at P • S. 
Points P and P' are points on the surface S, I -r' - P•l 
is the distance between P and P•, and the derivative 
O( )/Onp, is the difference with respect to the normal 
at point P•. This formulation can also be viewed as a 
Dirichlet-Neumann map which takes, in our case, Neu- 
mann (flux) data and produces the Dirichlet (value) 
data which satisfy Laplace's equation. The solution 
to the above problem assumes homogenous far-field 
boundary conditions. Adding q• to the above solu- 
tion yields a solution with the proper nonzero far-field 
conditions and that still satifies Laplace's equation and 
the given flux boundary conditions on the surface of the 
crystal. 

To solve this equation, we use BIEPACK [Atkinson, 
1999], a package written specifically to solve boundary 
integral equations on piecewise smooth surfaces. This 
package creates and refines a triangulation of the piece- 
wise smooth boundary and solves the general integral 
equation using collocation methods over these triangles. 
Figure 2 shows a triangulation of the c and a faces. As 
the triangulation is refined, the size of the linear sys- 
tem that results from the discretization of the integral 
equation can become quite large. To solve this system 
efficiently, BIEPACK uses a two grid iteration strategy, 
described by Atkinson [1994]. Other methods for solv- 
ing the integral equation (15) in three space dimensions 
include the fast multipole method (FMM) of Green- 
gard and RoJ•kJin [1997]. This method has been shown 
to give very accurate results on extremely complicated 
geometries. The only drawback to the FMM is that it 
is tedious to code, and, currently, no software is readily 
available. 

2.2.2. Determining flux values Fv,i. To com- 
pute the fluxes F•,i, we need to satisfy equation (8). To 
do this, we set up a nonlinear system G(Fv,i), where 
the ith entry is given by 

Gi(F•,x,Fv •) - .F•,i _ qeq(Ti*,p)•tn , , '~ Pair Dv 4Dr c• i (a; ) a i . 
(16) 

A description of how to evaluate the system G is given 
in Figure 3. In that subroutine we require values q(x?) 
at growth locations x•. These values are easily ob- 
tained by just choosing vertices of the triangulation 
used in BIEPACK that approximate these locations. 
Since BIEPACK returns values of q at each of these 
vertices, determining q(x?) amounts to obtaining the 
solution at the vertex chosen to represent x•. 

Our goal is to solve the system G(Fv,i) = 0 to deter- 
mine the unknown fluxes Fv,i. To solve this system, we 
pass the subroutine described in Figure 3 to a standard 

Figure 2. Triangulation of the top and one side of the three-dimensional hexagonal crystal. The 
midpoints of triangle edges are used, along with triangle vertices, to approximate the integral to 
second-order accuracy over each triangle. The solution to the potential equation for the xnixing 
ratio is computed at each triangle vertex and midpoint. 
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Subroutine to compute the non-linear system G(Fv,i) 

[Gx,G2] - SUBR01J?IlXlE G(Fv,x,Fv,2) 

1. Obtain two values Oq(xi)/On, i -- 1, 2 from ]•v,i using 

Oq = x on face i, i -- 1, 2 
On Pair Dr' 

2. Solve the boundary integral equation in (15) subject to the 
flux conditions given above. This gives us the mixing ratio 
q on the surface of the crystal. 

3. Solve for the temperature field using (13). This gives us the 
temperature distribution 2'on the surface of the crystal. 

4. The non-linear system is then given by 

Gi(Fv,1, Fv,2) - Fv,i qeq(Ti*,P) 5th . . . Pair •)v 4Dr 
where rr• - a(x?). Note that Gx and G2 both depend 
implicitly upon Fv,• and Fv,2 through q. 

Figure 3. Algorithm for determining unknown fluxes Fv,i. 

root-finding routine. The one we chose, HYBI•D1 is 
available through NETLIB and has the advantage that 
it does not require analytic expressions for the deriva- 
tives cgGi/CgFv,j and instead computes numeric approx- 
imations to these derivatives. The root-finding routine 
will return values -•v,i that provide consistent boundary 
conditions for the mixing ratio. 

Once we have the proper fluxes Fv,i, we can deter- 
mine the velocities of the two faces using (14). With 
these velocities V/, we can update the crystal dimen- 
sions using 

where d• ew and d• zd are the new and old dimensions of 
face i. The time step At is chosen to adequately model 
the dynamics of the growth process. Using the new 
crystal dimensions, the new fluxes F•,i must be found, 
the new dimensions are updated, and in this manner 
the crystal shape evolves. 

2.2.3. Accelerated numeric solution method. 
The root-finding routine evaluates the system described 
in Figure 3 several times for different trial values of Fv,i. 
However, while the root-finding routine is searching for 
these flux values, the shape of the crystal is not chang- 
ing, so we can significantly improve the speed of the 
algorithm by noting that the solution can be written in 
terms of basis functions Q/r (x) as 

2 
1 

q(x) = qc• - Pair Dv • _1•,• d• q[ (x), (18) k--1 

where F - c/a and the basis functions Qr i(x) satisfy 
the equations 

= 0, x e a r, 

= -Sij, x on the jth faces, (19) 

q[ (x) - 0, x 

where d• = c, d2 = a, 5ij = 1 if i = j and 0 otherwise, 
and f2 r is the region of space exterior to a crystal whose 
dimensions are d• = c = F and d2 =- a = 1. 

These functions Q/r can be precomputed using 
BIEPACK for several F values, and values at several 
possible sets of growth locations can be stored. The 
root-finding routine then evaluates (18) instead of solv- 
ing the entire boundary integral equation. For crystal 
dimensions (c,a) for which c/a lies between precom- 
puted values of F, linear or higher-order polynomial in- 
terpolation between stored values of the basis function 
is used. 

For simplicity, we consider only three kinds of posi- 
tions for the ledge sources' the middle of the basal ("c") 
faces, the middle of the prism ("a") faces, and the cor- 
ners, where a basal and two prism faces intersect. These 
are the x? defined earlier. Figure 4 shows the basis func: 
tions Q• (x?), j = 1, 2, evaluated at each of these ledge 
source positions. For comparison, we' show the basis 
functions for right circular cylinders of the same aspect 
ratios, as were derived by Ne!son [1994]. The curves 
are quite similar, indicating that the basic features of 
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Figure 4. Basis functions Qc r, Qa r evaluated at three 
assumed ledge source positions x•, for the hexagonal 
crystals and for right circular cylinders of the same as- 
pect ratios I'. 

the vapor diffusion field are not much affected by the 
faceted nature of the prism faces. 

Th.e temperature at ledge sources is also computed 
using the basis functions. We have 

2 

k-'-! 

where a: (W/(mK)) is the thermal conductivity of air. 

For notational convenience, we drop the superscript 
F on the basis functions from here on. 

2.3. Model Limitations 

The •nodel as it stands has several limitations. 

2.3.1. Size limitation. We are using Laplace's 
equation to derive fluxes of heat and vapor in the 
medium, which restricts us to the low Knudsen num- 
ber regime, in which the crystal is large compared with 
the vapor mean free path, A(T,p). The mean free path 
varies from about 0.05/•m at sea level to about 0.4/•m 
in the upper troposphere, so this condition holds for all 
tropospheric crystals over a few microns in size. 

A more restrictive size limitation stems from the fact 
that we have not included ventilation in our model to 

date, so that we focus on crystals smaller than a few 
100 /•m. Addition of ventilation to the model would 
involve addition of an advection term to equation (2); 
in principle, this could be done with minimal increase 
in complexity of the model. 

2.3.2. Shape limitations. As it stands, our crys- 
tal growth model is applicable only to regular, faceted 
hexagonal crystals in which there are only two different 
linear growth rates, one on each set of equivalent 'faces. 
Extension to the full free boundary problem for three- 
dimensional crystals, where each point of the surface re- 
sponds to its local environment without the constraint 
of faceted growth, would be a formidable job requiring 
many tunable parameters. This problem has been ap- 
proached for ice only in two dimensions [e.g., Yokoyama 
and Kuroda, 1989]. The limitation to faceted crystals 
implies a (temperature-dependent) limitation to the su- 
persaturation regimes over which our model applies, as 
explained in subsequent sections. 

2.3.3. Surface kinetics. Within the shape and 
size limitations mentioned previously, the limitation 
here is not with our model, but with the lack of knowl- 
edge regarding which growth mechanism(s) operate in 
water ice crystals and some of the physical parameters 
which control them. These mechanisms and parameters 
are described in the next section. 

3. The Condensation Coefficients 

The condensation coefficient c• represents the prob- 
ability that an incident vapor molecule adsorbed on a 
growing crystal surface will become incorporated into 
the crystal, and therefore has a value between 0 and 1. 
The physics of crystal growth lies in the determination 
of the function relating a to or(x?), the supersaturation 
at the crystal surface. Laboratory observations of ice 
crystal growth at temperatures below about -4øC are 
usually interpreted in terms of the terrace-ledge-kink 
(TLK) model [e.g., Burton et al., 1951; Yokoyama and 
Kuroda, 1989; Kuroda and Lacmann, 1982] for the sur- 
face kinetics at the ice-vapor interface. While the den- 
sity of vapor molecules impinging on the ice surface at 
atmospherically relevant temperatures is much higher 
than that on the crystals to which the TLK model has 
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{qoo,Too, c•oo} 

beselfeoe {qs,Ts, 
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Figure 5. Schematic, crystal in vapor field, showing c, a axes, defining basal, prism faces and 
the environmental and surface parameters. Insets are schematic representations of microscopic 
ledge sources for crystal growth, which can occur on any face (see text, section 3). 

been applied in general, observations [Frank, 1982; $ei 
and Gonda, 1989] suggest certain features of the model 
also apply to ice. 

For our purposes the important feature of the TLK 
model is that during growth the crystal surface con- 
sists of a series of fiat areas, or terraces, interrupted 
at intervals by steps, or ledges, one molecular diam- 
eter in height. These are illustrated schematically in 
Figure 5. Molecules from the vapor land mostly on 
terraces and diffuse independently on the surface until 
they encounter ledges, where they become incorporated 
at kinks, or horizontal "jogs" in the ledge. Ledges ad- 
vance as a result of incorporation of the new molecules; 
when a ledge has covered the entire crystal facet, that 
facet has advanced outward by one molecular diameter. 
Thus the crystal growth rate is determined by the prob- 
ability that an incoming molecule will be incorporated 
into a ledge before it desorbs back to the vapor. This 
probability increases as the spacing between the ledges 
decreases. The ledge spacing is controlled by the rate of 
creation of ledges and their velocity across the surface. 
The creation rate increases with increasing a* = or(x?), 
and their velocity changes with the local value of or. 

In our model we assume that the ledges are created 
either by (1) outcropping of screw dislocations, or by 
(2) two-dimensional nucleation. Screw dislocations can 

provide a continuous ledge source at any finite supersat- 
uration, and during growth the ledge forms a spiral cen- 
tered on the dislocation. Two-dimensional nucleation 

refers to the formation of stable, disk-shaped molecular 
clusters on the crystal surface, and is a sporadic process 
occurring only above a certain critical supersaturation. 
These mechanisms have been observed for a variety of 
crystals grown in laboratory experiments [e.g., Kaldis, 
1974]. For simplicity, we assume there is only one ledge 
generation point on each facet. 

3.1. Condensation Coefficients at Ledge 
Sources 

It can be shown [e.g., Kuroda and Lacmann, 1982; 
Yokoyama and Kuroda, 1989; Nelson and Baker, 1996] 
that for screw dislocation growth (SDG), the conden- 
sation coefficient c•*(cr*) can be represented by the ex- 
pression 

a*(cr*) ,-(rr*/rrsD)tanh(rrSD/Cr*), (21) 

where CrSD is a scaling parameter. 
For ledge generation via two-dimensional (2-D) nu- 

cleation we can write 

c•*(cr*) = C'2/)V•cr*)exp(--CnucCr*/•cr,2D) , (22) 



WOOD ET AL.' MODELING GROWTH OF HEXAGONAL ICE CRYSTALS 4853 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

i i "1 i i i " 

SDG 1 2DN 

1 

i 

! 

1 

i 

i 

! 

I 

I 

i 

I 

1 

I 

I 

! 

! 

1 

0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0 8 0 9 1 

•, (%) 

Figure 6. Condensation coefficient a*(cr*) for cases screw dislocation growth (SDG, solid line) 
and two-dimensional nucleation (2DN, dotted line), assuming cr• = crc•,2z> = 0.6% 

where Crcr,2D is the "critical" supersaturation for 2-D 
nucleation, the primary scaling parameter for this mech- 
anism, and Cnuc and •2D are relatively constant fac- 
tors that depend on temperature, pressure, crystal size, 
and surface parameters [Kuroda and Lacmann, 1982]. 
Figure 6 shows a*(rr*) for spiral dislocations (equa- 
tion (21)) and for 2-D nucleation (equation (22)) with 
crsD = Crcr, 2D -- 0.6•. From this figure it is clear 
that in 2-D nucleation there is a threshold to growth 
at or* = Crcr,2D, whereas growth can occur for any posi- 
tive supersaturation in SDG. 

3.2. Spatial Distribution of Condensation 
Coefficients 

Equations (21) and (22) give the functional forms 
for a*(cr*), the condensation coefficients at the ledge 
sources, that is, at xi - x•. To define the condensation 
coefficient ai at other positions xi on the ith crystal 
face, we recall that in faceted growth Fv,i is uniform 
over each facet. From (8) and (3), we have 

4F•,i (23) a*(cr•) - p•i•qeq(Ti,,p)•tncr• 
and 

O•iO'(Xi) -- 0:* (24) 

Thus we can define a spatia!!y varying function ai as 

4F•,i ai = (25) 
Pai•qeq (T;, P)Utn cr(xi) ' 

where a(xi) is computed from the mixing ratio q(xi). 

3.3. Surface Kinetics in Crystal Growth Model 

We now use these ideas to define several crystal 
growth scenarios. The ledges created by dislocations 
that emerge on a facet provide attachment sites for 
incoming vapor molecul'es and hence represent vapor 
sinks on the crystal at all positive supersaturations. 
However, predicting the probability of dislocations in 
terms of ambient conditions or nucleation scenario is 

difficult, if not impossible. It seems unlikely (particu- 
larly for large crystals) that the dislocation structure 
would be so uniform over all six prism faces that sym- 
metric crystals would readily ensue; moreover, labora- 
tory findings [McKnight and Hallerr, 1978] at -15 ø and 
-3øC showed that at those temperatures there were no 
dislocations on the prism faces. In the absence of dis- 
locations, the ledges can only be generated by 2-D nu- 
cleation, so that there is virtually no growth at surface 
supersaturations below 6rcr,2 D. • 

The presence or absence of dislocations is therefore 
very important in determining the character of crystal 
growth, so we have considered several possibilities for 
the surface structure of the ice crystals in our model. 

Let Dn indicate a crystal with emergent dislocations 
on n sets of faces; that is, Do denotes a crystal with 
no dis!ocations on any facet (growth can only occur 
by 2-D nucleation); Dx denotes a crystal with dislo- 
cations present only on one set of faces, prism (Dxa) or 
basal (D•c); and D2 denotes a crystal with dislocations 
present on both faces. When dislocations are present, 
growth occurs by either SDG or 2-D nucleation, depend- 
ing on which mechanism yields the highest flux. The 
ledge source location for SDG is always assumed to be 
at the center of the face, and that for 2-D nucleation is 
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Figure 7. Observed values of crcr, 2D(T) on basal and prism faces, reproduced from Nelson and 
Ix;night [1998]. Error bars for the basal face indicate uncertainty in the supersaturation at which 
growth started. The solid curve is a fit to the data and is dashed at its ends because slopes are 
not defined there. The upper limits of the prism face critical supersaturation data (downward 
pointing triangles) were estimated from observations of equal growth on all prism faces. At 5.5 ø 
C an upper limit was not recorded. Lower limits (upward pointing triangles) are the highest 
supersaturations at which nongrowth of one or more prism faces was observed. The steep dotted 
line is the ice supersaturation for vapor in equilibrium with supercooled liquid water, and the 
lower dotted line passes through the prism face data. The effect that growing faces had on 
reducing the supersaturation on the nongrowing faces was estimated to be less than 10% for the 
extreme crystal shapes in the experiments. Its effect is not included in the data [Nelson and 
Knight, 1998]. 

either at the center or corner depending on which has 
the higher surface supersaturation. Note that as CrSD 
increases, the crystal facets become more "perfect", or 
dislocation free, and D• and D2 crystals become equiv- 
alent to Do crystals. 

One of the goals of this paper is to identify the growth 
mechanisms and, in particular, the apparent role of 
dislocations, prevalent in different atmospheric cloud 
regimes. To do this we will compare observations of the 
crystals that form there with the results of our growth 
model for different crystal types (Do, Z)•, and D2). 

3.4. The Input Parameters 

There are few measurements of the characteristic su- 

persaturation for SDG, CrSD. Sei and Gonda [1989] mea- 
sured values between 0.3% and 3% on the surfaces of 
ice crystals grown on substrates at temperatures above 
-30øC. Predicted growth rates are fairly insensitive to 
the magnitude of crsD, since a* is a slowly varying func- 
tion of this parameter. 

Nelson and Knight [1998] obtained empirical values 
of critical supersaturation for two-dimensional nucle- 
ation, O'cr,2D, for the basal and prism faces of ice crys- 
tals grown on the end of a capillary tube at tempera- 
tures above ~15øC. The faces in contact with the capil- 
lary grew at all supersaturations, presumably by SDG, 
but the free faces often exhibited a sudden onset of 
growth as the supersaturation was increased. The value 
at which the onset occurred was taken to be Crcr, 2D. 
Their results (reprinted here in Figure 7) exhibit a 
large amount of scatter, but the general pattern is that 

a c above -4 ø C and below -9 ø C and at tem- O'cr,2D • (Ycr,2D • 

peratures in between, the two values are very close to- 
gether, with a perhaps slightly higher than crcr,2 D. Crcr,2D 

The uncertainty in the measurements, and the limited 
range of temperatures and humidities over which they 
were taken, limit the accuracy with which growth rates 
of crystals can be calculated. However, we are primar- 
ily interested in understanding the observed patterns in 
crystal stability and growth, for which the approximate 
values of the measured critical values (which are con- 
firmed by independent tests) suffice. Although we use 
by-eye fit to the measured average values here for some 
illustrative figures and calculations, in the main body 
our major results are presented in terms of the ratio 
of ambient to surface critical supersaturations, so that 
they can be applied to new surface parameter measure- 
ments as these become available. 

A surprising aspect of the laboratory results is the 
fact that C•cr,2•9 was always so low: less than 1% at 
temperatures above -10øC, and a maximum of 2.5% 
at -15øC. Theoretically, the supersaturation scales 
and Crc•,2•> increase with increasing edge free energy 
• (J/m), the energy of formation of a step. Calcula- 
tions of erst> and Crc•,2D from values of "/ derived from 
bond-counting arguments [Kuroda and Lacmann, 1982: 
Wood, 1999] yield values c•cr,9•z> m 10- 100%. The 
difference between theory and observation may be ev- 
idence that at temperatures close to the melting point 
the ice surface is sufficiently disordered that the bond 
counting arguments are not appropriate. While there 
exist ice crystal growth models that explicitly describe 
absorption of vapor into a liquid-like layer [Fukuta and 
Lu, 1994; Kuroda and Lacmann, 1982], these involve 
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parameters and assumptions that have not been mea- 
sured or tested. We have chosen therefore to estimate 
the critical supersaturation for 2-D nucleation crcr,2 D (T) 
at T _> -15øC from the measurements of Nelson and 

3.5. Physical Interpretation of Solutions 

In the analysis of model results to follow, it is conve- 
nient to conceptualize some of the important equations 
from the previous sections. From equation (8), we see 
the flux to any point on the ith face increases with su- 
persaturation at the ledge source location on that face: 

F• i oc a* *. (26) , i6ri 

* 

Another relationship between F•,i and cr i comes from 
(18), which shows that the vapor concentration at the 
surface of a growing crystal is less than that in the ambi- 
ent air because the growing crystal faces serve as vapor 
sinks. For the purposes of qualitative analysis we can 
make the approximation that qeq(Tc•,P) ----- qeq(T(x),p), 
so equation (18) can be written 

2 

Pai• D• qeq(To• p) E F, •dkQk(x•) • k--1 

2 

= - 4 (27) 

where d' = d/A and A is the vapor mean free path: 
X • D•,/gt•,. The product c•cr•z>diQ•(x•), for exam- 
ple, represents the loss of vapor at the ledge sources on 
r. he prism faces due to the fluxes to the basal faces; ac- 
cording to equation (27), cr• decreases with Ft,,i because 
of the vapor sink on the ith surface during its growth. 

Our model solves the crystal growth problem by find- 
ing the values of or.? that simultaneously satisfy (26) and 
(27). 

4. Model Results 

We have applied our numerical model to the inves- 
tigation of the link between surface parameters and 
macroscopic crystal properties over a range of param- 
eter values relevant to atmospheric clouds. We discuss 
our results in this and the next section of the paper. 

, 

4.1. Instantaneous Mass Growth Rates: 

Compaxisons to Other Models 

The rate of mass growth of a crystal (3•r) is usually 
approximated in atmospheric work by use of the so- 
called capacitance model in which the crystals are as- 
sumed to be ellipsoids of revolution or spheres. In these 
models the surface kinetic processes of crystal growth 
are not treated, and the supersaturation at the sur- 
face of the particle is assumed to be zero. According 
to the capacitance model, in the low Knudsen number 
(Kn = %/d) regime, the rate of growth of a solid el- 

lipsoid of revolution of major and minor axes Ccap, ac•,p 
is 

-•[c.• = Dvp•irqeq(Tc•,p)rr•47rC(acap,c•p) (28) + z(r,p) ' 

where C(acap,Ccap) iS the capacitance of the ellipsoid 
and Z(T,p) is a measure of the thermal impedance to 
growth: 

D•Lsu•Pairq•q,• ( Ls• 1) (29) Z(•, p) - • •,• , 
where R• is the specific gas constant for water va- 
por [Pruppacher and Klett, 1997]. The capacitance of a 
sphere is its radius, so the mass growth rate of a sphere 
of radius req in the low Kn regime is 

•flsphere- DvPairqeq(T•,p)a•4wreq (30) 
1 + Z(T,p) ' 

Our hexagonal crystal model calculates the linear 
growth rates • and 5 of each crystal face, so the total 
mass growth rate for a solid hexagonal prism is given 
by 

12 

•[• - •p•a(2ca + aa). (31) 
The two main differences between our model and 

the capacitance model lie in their treatments of crystal 
shape and the microphysics of crystal growth. We cal- 
culate the growth of regular hexagonal prisms instead 
of ellipsoids or spheres and relate the evolution of par- 
ticle shape to surface parameters that can in principle 
be measured. The capacitance model can be used to 
simulate crystals with different shapes and aspect ra- 
tios, but it cannot predict what those shapes will be. 
Also, in the capacitance and sphere models the diffu- 
sive flux to a crystal is proportional to a•; the surface 
supersaturation is zero everywhere. In reality, a• must 
be greater than zero on the surface in order to drive 
the surface kinetic processes of crystal growth [Kuroda, 
1984]. In our model the flux to the ith facet is propor- 
tional to a• - a•, where a• > 0, as determined by the 
solution to equations (26) and (27). For a given crystal 
shape, the flux of vapor to the crystal predicted by our 
model can therefore be much smaller than that given 
by the capacitance or sphere models. 

In order to observe the effects of these differences, 
we have compared the instantaneous m•s growth rates 
predicted by each of four crystal growth models: (1) 
HEX-D2: our hexagonal crystal model for type D2 
crystals (those with dislocations on all basal and prism 
faces); (2) HEX-D0: our hexagonal crystal model for 
type Do crystals (those with no dislocations), where 
we assumed acr,2D(c,a) = (0,6%,0.5%) [Nelson and 
Knight, 1998], and as• = ac,,2• on each face; (3) CAP- 
ell: the capacitance model (equation (28)) for an equal 
volume ellipsoid of the same aspect ratio; and (4) CAP- 
sph: the sphere model (equation (30)) for a sphere of 
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Figure 8. Comparison of mass growth rates predicted by our hexagonal crystal model for D2 
crystals (solid lines) and Do crystals (dashed lines), and by the capacitance model for equivalent 
volume ellipsoids (dotted lines) and spheres (circle). The upper plot shows the effect of changing 
the aspect ratio while keeping the supersaturation constant. The lower plot shows the effect 
of changing the supersaturation for isometric crystals. The ambient conditions used for these 
calculations were T = -10øC, p = 500 mbar, and the spherical crystal radius was 59 •m. We 
assumed Crcr,2D(c, a): (0.58%, 0.55%) [Nelson and Knight, 1998], and crsD: Crcr, 2D on each face. 

the same volume. The resulting values for each model 
are shown in Figure 8, plotted as functions of aspect ra- 
tio and ambient supersaturation. To better isolate the 
effects of changing these parameters, the same crystal 
mass was used for each model calculation (8 x 10 -zø 
kg). 

4.1.1. Effects of crystal shape. The effects of 
using different crystal shapes on the model-calculated 
mass growth rates are best seen (in Figure 8) in the 
HEX-D2 and capacitance models because the capaci- 
tance model does not include surface kinetics and, al- 
though our model does, its effects are small for D2 crys- 
tals for the parameter values used here. The reason 

for the observed variation with aspect ratio is that the 
mass growth rate is propor. tional to the crystal capaci- 
tance, related in general to the longest linear dimension 
of the crystal. For both ellipsoids and hexagonal prisms 
the capacitance (or effective capacitance) is minimum 
for isometric crystals and increases by about 20% for 
both models as F --> 0.2 and F -+ 5. Thus (1) /•-f 
is minimum for isometric crystals for both models and 
(2) the ratio of growth rates predicted by the HEX-D2 
and CAP-ell models is almost a constant independent 
of F. This constant is approximately equal to the ra- 
tio acap/a = 1.18 for an equivalent volume ellipsoid and 
hexagonal prism. Therefore had we used the same crys- 
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Plate 1. I•lodel-calculated distributions of surface supersaturation and condensation coefficient 
for a D.> crystal (a - 10 /•m, F - 4) growing at T - -9øC, p - 600 mbar, and am - 0.7%. 
The shape of the crystal is a three-dimensional hexagonal prism, but contours are shown on only 
one basal face (hexagon) and one prism face (rectangle). For this calculation we have assumed 
values for the critical supersaturation read from Figure 7: c - 0.4% and • - 0.5% The O'cr,2 D O•cr,2D . 
calculated linear growth rates are fi - 0.019/•,m/s and a - 0.012/•m/s, gi¾ing a mass growth rate 
of •l•r - 7.2 x 10 -zz g/s. 
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Plate 2. Model-calculated distributions of surfa.ce supersaturation and condensation coefficient 
for a Do crystal (a - 10/zm, F - 4) growing under the same conditions as in the previous plate 
(T - -9øC, p - 600 mbar, and croo - 0.7%). The calculated linear growth rates in this case 
are quite anisometric with fi - 0.035pm/s and fi - 0.0021•.m/s, giving a mass growth rate of 
gJ_r- 3.1 x 10 -xl g/s. 
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tal dimensions rather than the same crystal mass in the 
HEX-D2 and CAP-ell models, we would have obtained 
nearly identical mass growth rates for each aspect ratio. 

4.1.2. Effects of surface kinetics. In the HEX- 
Do model, dislocations are absent so that growth can 
occur only by 2-D nucleation. At low cro•, growth is 
highly hindered. When the ratio crc•/crcr,2D _< 1, the 
growth rate is nearly zero, and for crm/rrcr, 2 D •_ 2.5 it 
is still reduced by about 20% relative to model HEX-D2. 
(At higher values of rro•/rrcr,'2D faceted growth becomes 
unstable for Z)0 crystals, so that we cannot calculate 
growth rates beyond this point. A detailed discussion 
of this "stability limit" will be given in section 4.3). 

4.1.3. Summary. In summary, for 0.2 _< I' _< 5.0, 
mass growth rates computed from the capacitance and 
the sphere models for equal volume shapes are within 
10- 20% of those calculated by our flat-faced hexago- 
nal crystal model if dislocations are plentiful, that is, for 
D2 crystals, low CrSD. Much larger errors are possible if 
surface kinetics are neglected in cases where dislocations 
are not present and the ambient supersaturation is less 
than a few times crcr,2D. The values of Crcr,2D measured 
by Nelson and Knight [1998] for T _> -15øC are •- 1%, 
but because liquid droplets are likely to also be present 
in clouds at these temperatures, and because in vapor 
saturated with respect to liquid water at temperature T 
(øC), the supersaturation with respect to ice is approxi- 
mately tTl%, it is usually the case that am >> •c•,2z>, so 
that crystaI surface kinetics will only affect shape and 
not growth rates. However at lower temperatures such 
as in cirrus clouds, there is evidence (discussed in sec- 
tion 5) that crc•,2z> is much higher (_> 10%), so that sur- 
face kinetics could limit growth rates over a much Iarger 
range of atmospheric conditions, and would therefore be 
a more important model process to take into account. 

4.2. Surface Distributions of rr and a 

Our model can be used to calculate the supersatura- 
tion and condensation coefl:icient at each point on the 
surface of a hexagonal ice crystal. Examination of sev- 
eral examples illustrates the important features of these 
distributions and of their dependence on crystal surface 
structure. 

4.2.1. Type D2 crystal. Plate 1 shows the calcu- 
lated distribution of supersaturation on the basal and 
prism faces of a columnar D2 crystal at T = -9øC, 
calculated by assuming values of the critical supersatu- 
rations in the middle of the range measured by Nelson 
and Knight [!998] at this temperature. In this case the 
surface supersaturation is highest at the corners of each 
face and decreases toward the center, and both faces are 
growing by SDG. Note that the maximum value of rr is 

c = 0.4% the lower of the two crit- almost equal to Crcr, 2 D , 
ical supersaturations; any further increase in rr• would 
make 2-D nucleation at the corner the dominant growth 
mechanism. 

Also shown in Plate ! is the corresponding spatial dis- 
tribution of c• computed from equation (25). On both 

faces the condensation coefficient increases toward the 

center to compensate for the decreasing supersatura- 
tion and maintain a uniform growth rate. Physically, 
this occurs because the steps nucleated at the center 
speed up as they move into regions of higher supersat- 
uration, thus decreasing the slope or density of ledges 
and making it less probable for adsorbed molecules to 
become incorporated. Note, however, that c• does not 
approach 1 anywhere on the crystal. Both faces are 
growing at approximately the same rate (0.04 /•m/s), 
so this crystal would tend to become more isometric 
under constant conditions. 

4.2.2. Type Do crystal. Plate 2 shows the sur- 
face distributions of a and c• for a Do crystal of the 
same shape as in the previous case, and growing un- 
der the same conditions. It is a general result of our 
model that for corner ledge nucleation (x? -- Xcorner) 
the supersaturation is equal to the lower of the two 
critical supersaturations for 2-D nucleation on each face 
(or(x?) • .•low min[crcCr,2D , grcr,2D] ). The supersat- "'• •cr,2D • a 
uration on the basaI face is once again greatest at the 
corners of the crystal where it is maintained at or near 
•o•v _ c = 0.4% On the prism faces, however, rr .Ucr,2D (Ycr,2D ' 
is greatest at the center. The value at the corners is too 
low for 2-D nucleation on the prism face at this temper- 
ature, but cr increases toward the center to values close 

a -- 0.5% Two-dimensional nucleation growth to O'cr,2 D . 
thus occurs but at a much slower rate than on the basal 

faces. 

The surface distribution of the condensation coeffi- 

cient shows that c• reaches its maximum value of 1 

near the center of the basal face, indicating that uni- 
form growth could not be maintained for any further in- 
crease in the ambient supersaturation. In other words, 
•o• - 0.7• represents the stability limit for faceted 
growth of Do crystals (of this size and shape) at this 
temperature, in contrast to the D2 crystal case de- 
scribed above which had all faces growing uniformly 
at •o• - 1.5%. General results regarding the stability 
limit will be discussed in section 4.3. 

Although the figures shown here were calculated us- 
ing a high-resolution triangulation with 770 vertices, the 
lower resolution (194 vertices) shown in Figure 2 gives 
nearly identical results. 

For most applications, we do not need to know the 
full distribution of rr and • on the crystal surface, and 
are only interested in the linear growth rates of each face 
(which together give the total or mass growth rate) and 
whether or not uniform õrowth of each face is stable. 
This information can be obtained using the accelerated 
solution method described in section 2.2.3, in which cr 
and c• are calculated only at the corner and center of 
each face. 

4.3. Limits to Stable (Flat Faced) Growth 

From observations of vapor-grown ice crystals in the 
atmosphere and in the laboratory, it is well known that 
compact faceted shapes are usually found at low su- 
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persaturations while hollowed or dendritic shapes are 
found at high supersaturations (see Figure 1). The em- 
pirical boundary between these two regimes seems to 
depend on temperature but is not well characterized. 
The shape of ice crystals plays an important role in 
determining their radiative properties, fall speeds, and 
collision/collection e•ciencies, so it is valuable to have a 
way of predicting this shape transition in cloud models. 
Using our crystal growth model, we can calculate the 
highest ambient supersaturation for which facets can re- 
main flat, _hol in terms of given values for the critical 
supersaturation for 2-D nucleation, Crcr,2D, on each face. 
As better measurements of crcr,2D become available, our 
model predictions can be more confidently translated 
into actual atmospheric supersaturation values. 

Since the flux to any point x on a face is proportional 
to the product •(x)cr(x), growing crystals can maintain 
macroscopically flat faces only as long as this product 

is constant across each face, that is, as long as 

= ½2) 
for all x on the face (see equation (24)). For the faster 
growing faces, which are the first ones to hollow, or b• 
come concave, the surface supersaturation is highest at 
the corners and lowest at the center. If the ledge source 
is at the center of the crystal face, then ledges speed 
up as they move into regions of higher or(x), spread 
out, and decrease the local c•. There is no limit to how 
much a can decrease, so this situation is always stable. 
If the ledge source is the corner (or the corner source 
becomes dominant), then ledges slow down and "bunch 
up" as they approach the center, so that a(x) increases 
toward the center (see Plate 2) and a uniform growth 
rate can still be maintained, but only up to a point. 
This equality breaks down when a(x) reaches its maxi- 
mum value of unity. When the growth rate at the center 
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of the face can no longer keep up with that of the outer 
portions, the face begins to hollow. Thus stable growth 
is possible only for [Nelson, 1994] 

= _< (aa) 
•(x•) 

We have noted that in general, 2-D nucleation growth 
maintains the corner supersaturation at a value close 

c 9.D]) independent of rrc•. cr Iøw = rain [Crcar,2D ,O'cr ' to cr,2D 
Therefore as c% increases, the normal gradient 
Ocr/On •- (fro, - cr*)/d must increase. This in turn in- 
creases the flux Fv cr a*cr* (according to equation (26)), 
as well as the gradient in supersaturation parallel to the 
face (reducing cr(xmi•)), so that condition (33) is met. 
Eventually, at some limiting value cro• = _•ot the con- 
dition (33) can no longer be satisfied, and the crystal 
face hollows. 

We have calculated the ratio ..•ot •oo /Ucr,2D -- t•stab for 
a range of crystal and ambient parameters. Our re- 
suits, some of which are plotted in Figure 9, show that 
2 < Rstab <_ 5 over the range of values we examined, 
and within this range/•sta• depends to some extent on 
crystal type. For Do crystals, /i•sta, - 2 to 3. For D2 
crystals,/•s• depends on rrsD on the hollowing face; 

_ •low As crsD increases, the Rstab • 4 to 5 for crSD Vc•,2 D. 
D2 crystals effectively become Do crystals, and 
decreases. The value of Rstab is not very sensitive to 
either the crystal aspect ratio, or perhaps more surpris- 
ingly, its size. 

The results for/•,tab can be roughly summarized by 
the following simple arguments: 

1. R,tab is nearly independent of crystal size. As 
we have seen, the corner supersaturation is fixed at all 

_low If the gradient in cr crystal sizes; or(corner) m Ocr,2 D. 
parallel to the crystal surface were independent of crys- 
tal size, then an increase in crystal size would result 
in lower values of cr,,mid, and the hollowing condition 
would be approached sooner for larger crystals. At very 
large sizes this, in fact, is the case. However, the gra- 
dient parallel to the face is approximately proportional 
to the gradient perpendicular to the face (or flux) over 
the range of sizes we examined. Since the flux decreases 
with crystal size (at constant cry), the parallel gradient 
of cr decreases with increasing crystal size, and 
remains fairly constant over a large size range. 

2. The value of trYstab iS between 2 and 5. The values 
obtained for /•,t•b can be qualitatively understood in 
terms of equation (27). We designate the faces with the 
lower of the two critical supersaturation values "low", 
and the other faces we designate "hi". As Crc• increases, 
a given crystal starts to hollow first on the "low" faces, 
so that, we can write 

-- • low 

!r•stab -- Croo /O'cr,2 D 
, I , ! 

1 + a•owd•owq•ow + a•id•iq•i 
Ucr,2D 

(34) 

The term c•*•' r3 is the ratio of the diffusive and sur- j•j'q: j 
face kinetic resistances to growth on the jth faces. Dif- 
fusion between the crystal and the environment tends 
to favor growth at the corners because corners pene- 
trate farther into the vapor or temperature gradient, 
a tendency counteracted at low supersaturation by the 
spatial variation in condensation coefficient (equation 
(25)). On a nearly hollowing face the ledge sources are 
at the corners. The face can only remain flat as long as 
the ratio of diffusive to kinetic resistance remains less 

than or equal to 1, so the minimum value of/•ta• is 
approximately 2. The last term in equation (34) repre- 
sents the reduction of supersaturation on the hollowing 
faces due to the vapor sink on the nonhollowing, "hi" 
faces. This term is largest on D2 crystals, when growth 
on the nonhollowing face occurs via SDG. 

4.4. Steady State Growth Shapes 

In this section we calculate the "steady state" growth 
shape that develops in vapor growth under constant en- 
vironmental conditions for comparison with published 
habit diagrams [Nakaya et al., 1958; Auer and Veal, 
1970; Chen and Lamb, 1994] based on laboratory and 
field data. Observed aspect ratios of small (< 100/•m) 
ice crystals typically range between 0.2 and 5.0 over the 
0 ø to-30øC temperature range, and the alternations be- 
tween planar and columnar habits are consistently seen 
at around-4 ø, -10ø,-and-22øC. 

For comparison with these data, we have calculated 
the aspect ratio of initially isometric crystals after 10 
minutes of growth, for a range of values To• and 
The aspect ratio continues to change as the crystal 
grows and does not achieve a true steady state, but the 
rate of change decreases significantly after a few min- 
utes of growth for the conditions used here. Our results 
for three different assumptions regarding crystal sur- 
face properties are shown in Figure 10. Also indicated 
on these plots are the maximum ambient supersatura- 
tions at which uniform growth is stable, as discussed in 
the previous section. 

For each crystal type we see the observed transitions 
between planar (F < 1) and columnar (F > 1) crys- 
tals at around -3øC and -10øC for all crystal growth 
types, a result of the variations with temperature in 
observed crcr,2 D. The transitions become more abrupt 
as croo increases and as the growth mode changes from 
SDG with low erst> to SDG with high CrSD to 2-D nu- 
cleation, that is, as dislocations become less important. 
For c% > _•o• the crystals hollow, so the predicted 
aspect ratios cannot be analyzed quantitatively in this 
regime. 

The figures show that as long as dislocations are 
present on every face (D2 crystals) and crsD is low, only 
fairly isometric crystals remain unhollowed, but as SDG 
growth becomes less important (crSD increases), more 
anisometric crystals ckn remain faceted if the ambient 
supersaturation remains below the stability limit. For 
Do crystals we find a wider range of aspect ratios in 
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and (c) Do crystals. Ne]son and Knight's [1998] mea- 
surements were used for crc,,2z>. Thick line denotes max- 
imum supersaturations _not at which uniform growth is 
stable. 

the faceted regime than for the other types: from less 
than 0.25 to greater than 3, and an indication of much 
higher values for hollowed crystals. Although 2-D nucle- 
ation growth explains the overall habit variation with 
temperature, the fact that observed aspect ratios are 
usually more moderate at temperatures above -30øC 
suggests that dislocations also play a role in the growth 
of atmospheric ice crystals. 

5. Interpretation of Field Observations 

The stability criteria we have derived depend on the 
critical supersaturation values of each crystal facet. In 
the temperature regime for which we have data on sur- 
face parameters, we can infer the crystal growth pro• 
cesses from observed crystal shapes and our stability 
plots. At lower temperatures we infer values of Crcr,2 D 
based on field observations of faceted, hexagonal crys- 
tals at known temperatures and supersaturations. 

5.1. Mixed Phase Clouds 

At the warm temperatures and high ice supersatura- 
tions (due to the presence of liquid water) in mixed 
phase clouds, croo usually exceeds our predicted sta- 
bility limit of 5Crcr2D on both faces, and indeed most 
crystals have at least some hollowed or dendritic faces. 
The basic habit changes with temperature can be ex- 
plained by 2-D nucleation growth on at least one set 
of faces together with temperature-dependent values of 
•rcr,2 D [Nelson and Knight, 1998]. Based on our results 
in the previous section, the presence of dislocations on 
the nonhollowing faces would probably produce crys- 
tals with more moderate aspect ratios than if they were 
absent, so that comparisons of model predictions with 
observed aspect ratios [e.g., Auer and Veal, 1970] could 
potentially be used to infer dislocation occurrence fre- 
quencies for ice crystals in warm, mixed phase clouds. 
H?wever, because our model is limited to faceted crys- 
tals, we cannot yet make the quantitative predictions 
required for this comparison. 

5.2. Arctic Cirrus Data 

t(oro]ev eta]. [1999] presented in situ pictures of 
crystals in Arctic cirrus clouds at temperatures ranging 
from -11 ø to -36øC. These show that fewer than 10% of 

the crystals larger than 40/•m (their shape resolution 
limit) have compact shapes with fiat facets and sharp 
corners and that most are irregularly shaped polycrys- 
tals or rounded (presumably sublimating) crystals. 

There are several possible reasons for the rarity of 
large pristine crystals. Nucleation at low temperatures 
may produce polycrystalline ice [Pruppacher and Klett, 
1997], or these irregular crystals could be the result of 
coagulation of smaller pristine crystals [Jensen et al., 
1994a]. Alternatively, the irregular shapes could be due 
to the increasing effects of ventilation on larger particles 
as they fall. 
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Most of the columns were found at temperatures be- 
low-22øC, and most of the thin plates were found 
at temperatures _> -22øC, as observed by others [see 
Kobayashi, 1965; Chen and Lamb, 1994]. However, 
most of the so-called thick unhollowed plates were also 
found at these lower temperatures where columns might 
be expected. These are the smallest crystals shown 
by Korolev et al. [1999], and it may be they are the 
youngest, having formed from frozen droplets without 
traveling far from their formation location. Freezing at 
low temperatures could lead to the creation of many dis- 
locations, and therefore the growth may occur via SDG, 
explaining the fairly isometric shapes. We suggest these 
are D2 crystals. 

The measured supersaturations corresponding to 
these crystals range from a few per cent at the higher 
temperatures to around 40% at the lower temperatures. 
Some of the crystals are quite anisometric, with P • 5, 
without visible hollowing. Given the high ambient su- 
persaturations, the fact that growth on some facets is 
severely hindered without hollowing implies (Figure 9) 
that on those facets the values of acr, 2• are comparable 
to the high theoretical values calculated by Kuroda and 
Lacmann [1982], •%od [1999], and others. If this is the 
case, these are probably D• crystals. 

supersaturation values are of the order of 10% and that 
the values of asp are consistent with those measured in 
the laboratory [Sei and Gonda, 1989]. 

In order to explore possible explanations for the trigo- 
nal [Yamashita, 1973] and quadrilateral forms, we have 
investigated the supersaturation distributions on Dla 
crystals with dislocations on only some of the prism 
faces. An obvious explanation for trigonal shapes would 
be that these crystals had dislocations on every other 
prism face and, if aoo _< acar, 2D, these faces would grow 
out of existence leaving only the three nongrowing prism 
faces. Likewise, quadrilateral plates could be Dla crys- 
tals with dislocations only on two opposite prism faces. 
However, nonsymmetric dislocation distributions can 
also lead to symmetric crystals. Our model calculations 
show that lower supersaturations occur on the prism 
faces adjacent to the face(s) on which the vapor sink is 
greater, and vice versa. Also, subsequent small distor- 
tions in crystal shape do not appear to modify the su- 
persaturation distributions greatly. This suggests, for 
example, that having a dislocation on just one prism 
face would suppress growth on the adjacent faces, which 
would in turn enhance growth on the faces adjacent to 
those, which would suppress growth on the face oppo- 
site the dislocation, producing a trigonal crystal. 

5.3. Antarctic "Diamond Dust" 

Diamond dust refers to ice crystals which are often 
observed to precipitate from relatively clear skies in 
Antarctica. A large fraction of these crystals have pris- 
tine faceted shapes. Kikuchi and Hogan [1979] collected 
many of these crystals on Formvar-coated slides, and 
using a microscope observed a wide variety of shapes, 
including hexagonal columns and plates as well as trape- 
zoidal, triangular, and rhomboidal crystals. The domi- 
nant shape was columnar with an average aspect ratio 
ranging from 2.5 to 5.5, although many crystals with 
F >_ 10 were also seen. S. Warren (personal commu- 
nication, 1999) has also observed long, thin, unhol- 
lowed columnar crystals in Antarctica simultaneously 
with small, nearly isometric, unhollowed crystals. In- 
ferred air temperatures during Kikuchi and Hogan's 
observations were around-37 ø to-35øC, and a• was 
typically •, 30- 40% in the lowest 3 km of the atmo- 
sphere. Columns are the expected shapes at these tem- 
peratures [Kobayashi, 1965], but it is at first surprising 
to find that most crystals are n6t hollowed and that 
some have such large aspect ratios while others from 
the same locations are nearly isometric. 

The Arctic and Antarctic observations suggest that at 
low temperatures (1) the high aspect ratio crystals are 
D• crystals with dislocations only on the basal faces, 
while (2) the small isometric crystals are D2 crystals 
with dislocations on both prism and basal faces, and 
(3) the values of O'cr,21) are much higher than have been 
measured for T >_ -15 ø C. The extreme aspect ratios are 
reproduced by our model if we assume that the critical 

6. Habit and Stability Diagram 
(-30 ø < T < 0øC) 

From the interpretations of observed crystal shapes 
given above, we have constructed plausible functions 
Crcr,2 D (T) and a _ Crcr,2D(T ) for --30 < T < 15øC which 
merge into the values measured by NeJson and Knight 
[1998] at higher temperatures. Based on these func- 
tions we can extend our calculations of the stability 
limits for D2 and Do crystals (as in Figures 9 and 
10) to lower temperatures. The results are shown in 
Plate 3. While the calculations below -15øC are based 

on conjecture, they illustrate several important points. 
Faceted crystals are likely to be stable at much higher 
am at low temperatures than they are at higher temper- 
atures, potentially even in the presence of supercooled 
liquid droplets. There is also a much wider range of su- 
persaturations below acr, 2D, making it more likely that 
models that do not take into account crystal surface 
kinetics will be inaccurate. For example, Do crystals 
would not be expected to grow at all for cry: < 10% at 
-30øC based on these estimates, and Dx crystals would 
grow only on the faces with dislocations. Note that this 
latter possibility could produce plates in the nominal 
"column" temperature range (T < -22øC), or columns 
in the ::plate" range (-22 ø < T < -10øC), as is some- 
times observed. Experimentally distinguishing between 
D2, /)•, and Do crystals on the basis of shape should 
be much easier at low temperatures. 

To compare our model predictions with observations 
of ice crystal stability limits, we have taken from 
Kobayashi's [1965] diagram (see Figure 1) the line sep- 
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Plate 3. Conjectured habit diagram (top) for ice crystals as a function of temperature (T) and 
ambient supersaturation (croo) predicted by our model using values of crcC•,2z > and cr•,2 D (bottom) 
based on the [Nelson and Knight, 1998] (NK9$) measurements for T > -15øC and our estimated 
extension of these values to lower temperatures based on field observations. In the top panel, 
the thick blue line indicates the lower of the Crcr, 2 D values at each temperature. The type of 

_/ok, is denoted. The thick solid black growth expected for each crystal type in the region cro• < Ocr,2 D 
lines indicate our model-calculated stability limits for faceted growth of (lower) Do and (higher) 
D2 crystals. For comparison, the red line indicates the observed stability limit suggested by 
the Kobayashi habit diagram (see Figure 1). The straight diagonal dotted line indicates the ice 
supersaturation in vapor saturated with respect to supercooled liquid water. The vertical blue 
lines mark the temperatures at which transitions between planar and columnar habits would be 

_low 
predicted to occur (when cro• > Oc,,2D). 
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araring the "solid" crystal regime from the hollow or 
"skeleton" regime, and replotted it in Plate 3. At tem- 
peratures above -15øC, Kobayashi's observed limit is 
closer to. but somewhat higher than, our predictions for 
D.2 crystals. and has a remarkably similar shape. Be- 
low -15 ø. Kobayashi's limit matches very closely our 
predicted stability limit for Do crystals. Although our 
model results can only be as accurat, e as the input val- 

- o-o- that ice cr ues of crcn'• •p. this comparison suooests ystals 
ntav contain fewer dislocations at lower temperatures. 

. 

The fact that, facets appear to be more stable than we 
have predicted at 2r' >_ -15øC, where crc•.•o has been 
measured, could be due either to the difficulties of de- 

simulate cloud evolution, but serve only to illustrate the 
importance of these effects. 

In our simplified cloud model. we prescribe an up- 
draft velocity and ice crystal number density (we have 
considered only fully glaciated clouds) and calculate the 
evolution of temperature, supersaturation, and ice crys- 
tal size and shape as they grow and release latent, heat. 
We have taken tl•e number density of ice crystals to be 

10 t; m -:•, which is toward the upper e•td of the ra.•ge of 
observed number densities in real clouds (typically 103- 
10 r m -3) [œ•'lt, ppachcr artd Nlctt. 1997: Strom ctal.. 
1997], in order to provide a noticeable sink for water 
vapor. We assume all of the crystals have identical size. 

tecting tltis tintit observationally or to processes we have sitape, and surface characteristics. as they evoh'e with 
not included. or' treated correctly, in our model. Per- 
haps the hotlows are not noticeable until c;-• is signifi- 
cantly greater than -•ø• although this would bias the 
observations at all temperatures, not just above 
Another experimental difficulty is measuring or main- 
taini•g the supersaturation accurately at values below 

time. We have not included nucteatior• of new particles. 
so the trambet density of particles remains constant. We 
have also ignored radiative and ventilation efteels on 
growth, but these are small for the small crystal sizes 
considered. 

Our results for two cloud cases are discussed below. 

liquid water saturation. Titis could be more of a prob- In each case we have calculated the evolution of the en- 
leto at higher temperatures because the stability limits 
are lower, but one might expect values both greater 
than and less than the theoretical values in titis case. 

In our model the only way to increase crystal stabil- 
ity would be to suppress 2-D nucleation at the corners. 
This could be an effect of impurities, which we have not 
included in our model. Alternatively, this could be an 

effect of steps generated by dislocations near the cen- 
ter of the face which move toward the corners and may 

disrupt subcritical 2-D nuclei, an effect not included in 

vironmental cor•ditions (T and or,:,) and ice crystal char- 
acteristics (•. d. a. c, F, m) during rite updraft using (1) 
our hexagonal crystal model assuming D._•. Do. and D• 
cryst, als. and (2) the capacitance model. We assume the 
hexagonal crystals are initially isometric and determine 
the subsequent aspect ratio evolution self-consistently 
from the calculated values of d and •. For the capac- 
itance model we use a fornmla for the aspec• ratio as 
a function of temperature taken from Chen and Lamb 
[1994], and we reduce the calculated mass growth rate 

our simplified treatment of 2-D nucleation kinetics. If by 15% to compensate for the larger radii (a and c) of 
our supposition that ice crystals have fewer dislocations an equivalent volume ellipsoid (see section 4.1). 
at lower temperatures is correct. then this effect would 
also decrease with temperature. 7.1. Case 1' High Temperature 

7. Cloud Model 

Because of its speed, our single-crystal growth code 
can he inserted into dynamical models of ice ctouds to 
calculate growth rates and shape evolution of the ice 
crystals. We have shown in previous sections that for a 
fixed set of environmental conditions, different assump- 
tions about the surface kinetic mechanisms and param- 
eters can lead to significantly different predictions for 
both growth rate and crystal shape. In clouds. condi- 
tions are constantly changing, and there can be strong 
feedbacks between condensation rates, the ambient su- 
persaturation, and particle number densities (since nu- 
cleation rates are dependent on croo). Therefore ice crys- 
tat microphysics could have intportant macroscopic ef- 
fects on cloud evolution in addition to it.s control of the 

shape and consequent radiative properties of cloud ice. 
A full treatment of this problem is beyond the scope 
of titis paper, but we can show some of the potential 
effects of including surface kinetics by using our growtit 
code in a simple parcel cloud model. The calculations 
described i• this section are not meant t,o realisticalii' 

In Figure 11. we follow the evolution of a cloud of ice 
crystals ia a 20 cm/s updraft starting at T - -13øC, as 
predicted by our model and by the capacitance model. 
We assume the temperature dependence of •.2D given 
in Figure 7, and asn= acr.,2n. 

7.1.1. Supersaturation and crystal mass. The 
ambient supersaturation increases due to cooling until 
crystals become large enough to be an effective vapor 
sink, then decreases. The peak supersaturation value 
reached depends on the model, being highest for the 
model with the larges• surface kinetic resistance (D0) 
and smallest for the model with zero surface kinetic re- 

sisrance (capacitance). The mass evolutions predicted 
by all of the n•odels are very similar, so that in this case, 
an increase in surface kinetic resistance is compensa[ed 
for by an i•crease in supersaturation. This supersatu- 
ration differer•ce could t•ave a,r• indirect, impact on mass 
evolut, io•t if it afbcted ice nucleation rates. 

7.1.2. Crystal shape. The models predict very 
different crystal aspect ratio evoluticms. The results 
see• here could have bee• anticipated based on our 
"st, early state" ha. bit calc•tlations shown in Figm'e 10. 
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Figure 11. Evolut. ion of ambient conditions and ice crystal characteristics for parcel model of 
a full)- glaciated cloud (2, - 20 cm/s, .¾ - 10 • m -3, p - 500 mbar) comparing four ice crystal 
growth models: ore' hexagonal models for type/)'2 (solid lines), Do (dashed lines), and D• (3ash- 
dotted lines) crystals, and the capacitance model for ellipsoids with temperature-dependent aspect 
ratio (dotted lines). We have indicated conditions where our model predicts hollowing, and on 
which face, by cross-hatching the corre'•ponding linear growth velocity lines. 

The Do crystals become very platelike. with F becoming 
less than 0 1, because cr• never exceeds • but the - Gcr,2 D , 
D2 crystals remain isometric because the basal faces can 
grow by SDG. (Note also that our znodel predicts D0 
crystals would hollow on the prism faces during the brief 
period of time that a• > _ao• ) Type D• crystals be- 
come moderately columnar with 1 < F < 2. The aspect 
ratio expected at these temperatures based on Chen and 
Lamb's [1994] F(T) function is 0.3-0.4, but this repre- 
sents an average of observed values which ranged fi'om 
0.15 to 0.85. 

7.2. Case 2: Low Temperature 

\Ve have also run our parcel model for the case of an 
ice cloud at around -25øC with an updraft velocity of 35 
cm/s. Unlike the last case which wats initialized at equi- 
librium, here we assumed the i•itial vapor density was 

saturated with respect to liquid water, as it would be if 
the cloud had just, glaciated. Application of our crystal 
growth model below-15øC is hampered by the lack of 
data regarding crcr.,2o at these temperatures. Therefore 
we have used the values inferred from observations, as 
discussed in section 5. We have also assumed CrSD = 2ø• ' 
based on the results of Sei and Gonda [1989]. With 
these assumptions regarding the crystal surface proper- 
ties. we have calculated the cloud evolut, ion for' D2, D•, 
aztd Do crystals. and the capacitance model, as shown 
ixt Figure 12. In titis case the evolution of every one of 
our test parameters differs significantly from rnodel to 
model. highlightinõ the importance of ice crystal surface 
characteristics in low-temperature clouds. 

7.2.1. Supersaturation and crystal mass. Here 
the supersaturatiort decreases rapidly as crystals take 
up excess vapor, titan reaches a •early steady value af- 
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Figure 12. Same format as Figure 11 for' cold ice cloud (u,- 35 cm/s' A',,,• - 106 nz-:". i;- 330 
mbar). except we have used type D•a crystals instead of type D•c. The values used for the ice 

• -8•, " -9% (see Figure3) andasn--')t• surface parameters were gcr,.2D Gcr,2 D • - . 

tera few minutes. This value is • 2% for all cases ex- 

cept type Do crystals due to the high values asstuned foI. 
•.•..2D at this temperature. The mass evolution is also 
similar for each model except for the D0 crystals which 
grew significantly slower. This is due to the fact that 
the prism faces were barely growing, so that the surface 
area of the growing basal faces remained constant; that 
is. the crystal was growing only in one din•ension. This 
case shows that the supersaturation does not always 
compensate for surface kinetic effects on mass growth 
rates. 

7.2.2. Crystal shape. As in the previous case, 
rt•e predicted shape evolution is also dramatically dif• 
ferenr fi)r each crystal type. Type D•,• crystals (which 
have dislocations on only the prisrn faces) attained an 
as'[•ecr ratio of almost 0.2 after 10 mixnltes, compared to 
7 tbr D0 •'rystals. and wear 1 fbr D2 crystals. The aver- 

u.)scr x ed valtte used for the capacit, ance n•odel was age 

about 2. Tt•ese resttits de•nonstra.t.e titat both plates 
and colunms ('a• form at tl•e same ten•perature, de- 
pendi•xg on the distribution of •lish)cations on the crys- 
tals. 

8. Sumlnary and Conclusions 

This paper deals wit}• two important, strongly cou- 
pled aspects of vat•or growth of atn•ospheric ice crystals 
that have been largely neglected by previous n•odels: 
shape and surface kidratios. W(, have developed one of 
the first •xodel• fi•r three-di•,teItsi•al faceted crystals 

to take both of these into accottrtt irl a physical and 
self-consistent way. It is the first model capable of cal- 
culating the axial growth rates a•d the surface distri- 
butions of supersatttrati•ut a•M co•dermation coefficient 
•)n realistically stmt•ed. tln'ee--{linmnsio•al, faceted ice 
crystals. The model :s }rased o•t a n(•vel, efficient 
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merical method for s>lution of the exterior boundary 
value problent in three dimensions. We provide a first 
step in relating the observed macroscopic features of ice 
crystals to the surface processes by which they grow. 
Our major results are summarized below. 

8.1. Growth Rates 

8.1.1. Effect of shape. For hexagonal prism ice 
crystals with the same mass but different aspect ra- 
tio (F - c/a), the mass growth rate rh is smallest for 
isometric crystals and increases for more columnar or 

planar shapes, such that •h is m 20% higher for F - 5 
and F - 0.2. 

In cases where the surface kinetic resistance is low 

(ac• > crc•,2D), the capacitance model predicts mass 
growth rates 10- 20% higher than our model predicts 
for hexagonal crystals of the same aspect ratio and 
mass. This difference is not strongly dependent on F, 
so reducing the ellipsoid capacitance model predictions 
in each case by 18% yields rh values that are within 5% 
of our hexagonal crystal model. 

The equivalent mass sphere •nodel produces mass 
growth rates at least 10% higher than our model pre- 
dictions for isometric hexagonal crystals. 

8.1.2. Effect of surface kinetics. The mass 

growth rates of ice crystals can be significantly slowed 
due to surface kinetics (the processes by which adsorbed 
molecules become incorporated into the crystal lattice) 
if dislocations are absent and the ambient supersatura- 
tion is less than a few tinms the minimum critical su- 

persaturation for 2-D nucleation, or even if dislocations 
are present and cr• is also << crXD the characteristic 
supersaturation for SDG. 

8.2. Stability Limits for Faceted Growth 

For crystals with no dislocations (type Do) which 
grow only by 2-D nucleation, faceted growth becomes 

unstable when the ambient supersaturation reaches a 
value of 2-3 times _•o•,, the lower of the critical SU- øcr,2D • 
persaturations on the basal or prism faces. For crystals 
with dislocations on each face (type D2), faceted growth 
remains stable at larger supersaturations, with hollow- 
ing beginning at 4 to 5 times _•o-•, The stabiliw limit øcr,2D- . 

for type D1 crystals depends on whether the disloca- 
tions are on the face with the lower or higher value of 
Crc.r.2D , making the D1 crystals the same as Do or D 2 
crystals, respectively. As the value of Crcr,2 D for each 
face varies with temperature, so will the absolute value 
of _hol For T > -15øC, Nelson and Knight's [1998] 
measurements of rrcr,2D predict _ao• varies from 0.6 to 
2.7%. Therefore under conditions of water saturation 

in •nixed phase clouds, nonfaceted groxvth is predicted 
by our model, as observed. The frequent occurrence of 
unhollowed crystals a.t the low temperatures and rela- 
tively high supersaturations of the Arctic and Antarctic 
suggests that critical supersaturations are of the order 
of 10% at temperatures below about -20øC. Therefore 
cr hø• could range from 20% to 50% OO ' 

8.3. Interpretation of Particle Shapes 

Based on the results of our model, it is possible to 
use observed shapes of ice crystal crystals in the at- 
mosphere, particularly if the growth conditions (T, 
are also measured, to derive information regarding the 
nature of the ice crystal surface, including the criti- 
cal supersaturations for 2-D nucleation, the abundance 
and distribution of dislocations, and related to these, 
the crystal growth mechanism(s). Ideally, of course, we 
would like to do this in reverse, and use our model to 
predict the shapes and sizes of atmospheric ice crystals 
for given environmental conditions. However, this is not 
yet possible due, in large part, to our lack of knowledge 
regarding the physical nature of the ice crystal surface. 
Therefore this "postdiction" of crystal characteristics 
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Figure 13 Diagram summarizing our results for the expected shape stability, aspect ratio. 
axtd growth mechanisms for ice crystals of each type (D.2, D•, and Do) as a function of R•t,• - 

cr low (Too / cr,2D' 
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from shape is an important exercise, as is the collection 
of more in situ and laboratory data. 

Figure 13 summarizes our results for the expected 
shape stability, aspect ratio, and growth mechanisms for 
ice crystals of each type (D2, D•, and Do) as a function 

l..low This diagram shows the stability Of l•stab -- croo /•' cr,2D' 
limit separating faceted and hollowed crystals for each 
crystal type as described above. We have characterized 
the aspect ratio of faceted crystals as isometric, mod- 
erate, or extreme (P) 10). Isometric crystals are most 
likely to be type D2, with dislocations on each face. 
Crystals with extreme aspect ratios (F _> 10), such as 
the long "whiskers" observed in the Antarctic, are prob- 
ably type D_•c, with dislocations completely absent on 
prism faces. The occurrence of these crystals implies 
that the supersaturation must be less than Crcr, 2 D On 
the nongrowing face, so that lower limits for crcr,2D at 
these temperatures can be determined if cro• is known. 
As can be seen in this diagram, the regime most sen- 
sitive to the presence and distribution of dislocations 

,,.lO•J . is 0 < Crc• < •'cr,2P, no growth implies Do, growth to 
extreme P implies D1, and more isometric growth im- 
plies D2 type crystals. This regime may be much more 
accessible experimentally at very low temperatures. 

8.4. Effects of Surface Kinetics on Cloud 
Evolution 

Different assumptions regarding the characteristics of 
the ice crystal surface, such as the distribution of dislo- 
cations, can lead to very different predictions for parti- 
cle shapes in clouds, and hence, possibly inaccurate pre- 
dictions of radiative effects and precipitation formation. 
At low temperatures the effect of surface impedance on 
crystal growth may be enough to substantially increase 
supersaturations in fully glaciated clouds, which may 
have important effects on new particle nucleation rates, 
and can also decrease the mass growth rate. Tb•e ca- 
pactrance model, which does not include surface kinetic 
effects, will generally underestimate the supersaturation 
in condensing ice clouds. 
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