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Abstract1

Clawpack is a software package designed to solve nonlinear hyperbolic partial di↵erential equa-2

tions using high-resolution finite volume methods based on Riemann solvers and limiters. The pack-3

age includes a number of variants aimed at di↵erent applications and user communities. Clawpack4

has been actively developed as an open source project for over 20 years. The latest major release,5

Clawpack 5, introduces a number of new features and changes to the code base and a new devel-6

opment model based on GitHub and Git submodules. This article provides a summary of the most7

significant changes, the rationale behind some of these changes, and a description of our current8

development model.9

1 Introduction10

The Clawpack software suite [14] is designed for the solution of nonlinear conservation laws, balance11

laws, and other first-order hyperbolic partial di↵erential equations not necessarily in conservation form.12

The underlying solvers are based on the wave propagation algorithms described by LeVeque in [39], and13

are designed for logically Cartesian uniform or mapped grids or an adaptive hierarchy of such grids.14

The original Clawpack was first released as a software package in 1994 and since then has made major15

strides in both capability and interface. More recently a major refactoring of the code and a move16

to GitHub for development has resulted in the release of Clawpack 5.0 in January, 2014. Beyond17

enabling a distributed and better managed development process a number of user-facing improvements18

were made including a new user interface and visualization tools, incorporation of high-order accurate19

algorithms, parallelization through MPI and OpenMP, and other enhancements.20

Because scientific software has become central to many advances made in science, engineering,21

resource management, natural hazards modeling and other fields, it is increasingly important to describe22

and document changes made to widely used packages. Such documentation e↵orts serve to orient new23

and existing users to the strategies taken by developers of the software, place the software package in24
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the context of other packages, document major code changes, and provide a concrete, citable reference25

for users of the software.26

With this in mind, the goals of this paper are to:27

• Summarize the development history of Clawpack,28

• Summarize some of the major changes made between the early Clawpack 4.x versions and the29

most recent version, Clawpack 5.3,30

• Summarize the development model we have adopted, for managing open source scientific software31

projects with many contributors, and32

• Identify how users can contribute to the Clawpack suite of tools.33

This paper provides a brief history of Clawpack in Section 1.1, a background of the mathematical34

concerns in Section 1.2, the modern development approach now being used in Section 2, the major35

feature additions in the Clawpack 5.x major release up until Version 5.3 in Section 3. Some concluding36

thoughts and future plans for Clawpack are mentioned in Section 4.37

1.1 History of Clawpack38

The first version of Clawpack was released by LeVeque in 1994 [37] and consisted of Fortran code39

for solving problems on a single, uniform Cartesian grid in one or two space dimensions, together with40

some Matlab [45] scripts for plotting solutions. The wave-propagation method implemented in this41

code provided a general way to apply recently developed high-resolution shock capturing methods to42

general hyperbolic systems and required only that the user provide a “Riemann solver” to specify a43

new hyperbolic problem. Collaboration with Berger [9] soon led to the incorporation of adaptive mesh44

refinement (AMR) in two space dimensions, and work with Langseth [36, 35] led to three-dimensional45

versions of the wave-propagation algorithm and the software, with three-dimensional AMR then added46

by Berger.47

Version 4.3 of Clawpack contained a number of other improvements to the code and formed the48

basis for the examples presented in a textbook [39] published in 2003. That text not only provided a49

complete description of the wave propagation algorithm, developed by LeVeque, but also is notable in50

that the codes used to produce virtually all of figures in the text were made available online [39].51

In 2009, Clawpack Version 4.4 was released with a major change from Matlab to Python as the52

recommended visualization tool, and the development of a Python user interface for specifying the input53

data.54

In 2009, Clawpack Version 4.4 was released with a major change from Matlab to Python as the55

recommended visualization tool, and the development of a Python user interface for specifying the input56

data. Finally in January of 2013 the 4.x versions of Clawpack ended with the release of 4.6.3157

Version 5 of Clawpack introduces both user-exposed features and a number of modern approaches58

to code development, interfacing with other codes, and adding new capabilities. The move to git59

version control also allowed a more complete open source model. These changes are the subject of the60

rest of this paper.61

1.2 Hyperbolic problems62

In one space dimension, the hyperbolic systems solved with Clawpack typically take the form of63

conservation laws64

q

t

(x, t) + f(q(x, t))
x

= 0 (1)65

1Details of these changes can be found at http://depts.washington.edu/clawpack/users-4.6/changes.html. Version
4.x used svn version control and the freely available software (under the BSD license) was distributed via tarballs.
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or non-conservative linear systems66

q

t

(x, t) +A(x)q(x, t)
x

= 0, (2)67

where subscripts denote partial derivatives and q(x, t) is a vector with m � 1 components. Here the68

components of q represent conserved quantities, while the function f represents the flux (transport)69

of q. Equation (1) generalizes in a natural way to higher space dimensions; see the examples below.70

The coe�cient matrix A in (2) or the Jacobian matrix f

0(q) in (1) is assumed to be diagonalizable71

with real eigenvalues for all relevant values of q, x, and t. This condition guarantees that the system72

is hyperbolic, with solutions that are wave-like. The eigenvectors of the system determine the relation73

between the di↵erent components of the system, or waves, and the eigenvalues determine the speeds at74

which these waves travel. The right hand side of these equations could be replaced by a “source term”75

 (q, x, t) to give a non-homogeneous equation that is sometimes called a “balance law” rather than a76

conservation law. Spatially-varying flux functions f(q, x) in (1) can also be handled using the f-wave77

approach [5].78

Examples of equations solved by Clawpack include:79

• Advection equation(s) for one or more tracers; in the simplest, one-dimensional case we have:

q

t

+ (u(x, t)q)
x

= 0.

The velocity field u(x, t) is typically prescribed from the solution to another fluid flow problem,80

such as wind. Typical applications include transport of heat, energy, pollution, smoke, or another81

passively-advected quantity that does not influence the velocity field.82

• The shallow water equations, describing the velocity (u, v) and surface height h of a fluid whose
depth is small relative to typical wavelengths.

h

t

+ (hu)
x

+ (hv)
y

= 0 (3)
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(6)

Here g is a constant related to the gravitational force and b(x, y) is the bathymetry, or bottom83

surface height. Notice that the bathymetry enters the equations through a source term; additional84

terms could be added to model the e↵ect of bottom friction. These equations are used, for instance,85

to model inundation caused by tsunamis and dam breaks, as well as to model atmospheric flows.86

• The Euler equations of compressible, inviscid fluid dynamics, consist of conservation laws for mass,87

momentum, and energy. The wave speeds depend on the local fluid velocity and the acoustic wave88

velocity (sound speed). Source terms can be added to include the e↵ect of gravity, viscosity or89

heat transfer. These systems have important applications in aerodynamics, climate and weather90

modeling, and astrophysics.91

• Elastic wave equations, used to model compressional and shear waves in solid materials. Here92

even linear models can be complex due to varying material properties on multiple scales that93

a↵ect the wave speeds and eigenvectors.94

Discontinuities (shock waves) can arise in the solution of nonlinear hyperbolic equations, causing95

di�culties for traditional numerical methods based on discretizing derivatives directly. Modern shock96

capturing methods are often based on solutions to the Riemann problem that consists of equations (1)97

or (2) together with piecewise constant initial data with a single jump discontinuity. The solution to98
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the Riemann problem is a similarity solution (a function of x/t only), typically consisting of m waves99

(for a system of m equations) propagating at constant speed. This is true even for nonlinear problems,100

where the waves may be shocks or rarefaction waves (through which the solution varies continuously in101

a self-similar manner).102

The main theoretical and numerical di�culties of hyperbolic problems involve the prescription of103

physically correct weak solutions and understanding the behavior of the solution at discontinuities. The104

Riemann solver is an algorithm that encodes the specifics of the hyperbolic system to be solved, and it is105

the only routine (other than problem-specific setup such as initial conditions) that needs to be changed106

in order to apply the code to di↵erent hyperbolic systems. In some cases, the Riemann solver may also107

be designed to enforce physical properties like positivity (e.g., for the water depth in GeoClaw) or to108

account for forces (like that of gravity) that may be balanced by flux terms.109

Clawpack is based on Godunov-type finite volume methods in which the solution is represented110

by cell averages. Riemann problems between the cell averages in neighboring states are used as the111

fundamental building block of the algorithm. The wave-propagation algorithm originally implemented112

in Clawpack (and still used in much of the code) is based on using the waves resulting from each113

Riemann solution together with limiter functions to achieve second-order accuracy where the solution is114

smooth together with sharp resolution of discontinuities without spurious numerical oscillations (see [39]115

for a detailed description of the algorithms). Higher-order WENO methods have also been developed116

relying on the same Riemann solvers. These methods can be found in PyClaw (see Section 3.6), one117

of the packages in the larger Clawpack ecosystem.118

Problem-specific boundary conditions must also be imposed, which are implemented by a subroutine119

that sets the solution value in ghost cells exterior to the domain each time step. The Clawpack120

software contains library routines that implement several sets of boundary conditions that are commonly121

used, e.g. periodic boundary conditions, reflecting solid wall boundary conditions for problems such122

as acoustics, Euler, or shallow water equations, and non-reflecting (absorbing) extrapolation boundary123

conditions. As with all Clawpack library routines, the boundary condition routine can be copied and124

modified by the user to implement other boundary conditions needed for a particular application.125

In two or three space dimensions, the wave-propagation methods are extended using either dimen-126

sional splitting, so that only one-dimensional Riemann solvers are needed, or by a multi-dimensional127

algorithm based on transverse Riemann solvers introduced in [38]. Both approaches are supported in128

Clawpack. A variety of Riemann solvers have been developed for Clawpack, many of which are129

collected in the riemann repository, see Section 3.2.130

Adaptive mesh refinement (AMR) is essential for many problems and has been available in two131

space dimensions since 1995, when Marsha Berger joined the project team and her AMR code for the132

Euler equations of compressible flow was generalized to fit into the software which became AMRClaw133

[10], another package included in the Clawpack ecosystem. AMRClaw was carried over to three134

space dimensions using the unsplit algorithms introduced in [36]. Starting in Version 5.3.0, dimensional135

splitting is also supported in AMRClaw, which can be particularly useful in three space dimensions136

where the unsplit algorithms are much more expensive. Other recent improvements to AMRClaw are137

discussed in Section 3.4.138

There are several other open source software projects that provide adaptive mesh refinement for139

hyperbolic PDEs. The interested reader may want to investigate AMROC [16], BoxLib2, Chombo [1],140

Gerris [50], OpenFOAM [46], or SAMRAI [3], for example.141

2 Development Approach142

Clawpack’s development model is driven by the needs of its developer community. The Clawpack143

project consists of several interdependent projects: core solver functionality, a visualization suite, a144

general adaptive mesh refinement code, a specialized geophysical flow code, and a massively parallel145

Python framework. Changes to the core solvers and visualization suite have a downstream e↵ect on the146

2https://ccse.lbl.gov/BoxLib/index.html
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other codes, and the developers largely work in an independent, asynchronous manner across continents147

and time zones.148

The core Clawpack software repositories are:149

• clawpack – responsible for installation and coordination of other repositories,150

• riemann – Riemann solvers used by all the other projects,151

• visclaw – a visualization suite used by all the other projects,152

• clawutil – utility functions used by most other projects,153

• classic – the original single grid methods in 1, 2, and 3 space dimensions,154

• amrclaw – the general adaptive mesh refinement framework in 2 and 3 dimensions,155

• geoclaw – solvers for depth-averaged geophysical flows which employs the framework in amrclaw,156

and157

• pyclaw – a Python implementation and interface to the Clawpack algorithms including high-158

order methods and massively parallel capabilities.159

A release of Clawpack downloaded by users contains all of the above. The repositories riemann,160

visclaw, and clawutil are sometimes referred to as upstream projects, since their changes a↵ect all161

the remaining projects in the above list, commonly referred to as downstream projects. There are162

some variations on this, for instance AMRClaw is upstream of GeoClaw, which uses many of the163

algorithms and software base from AMRClaw. To coordinate this the clawpack repository points to164

the most recent known-compatible version of each repository.165

Beyond the major core code repositories, additional repositories contain documentation and ex-166

tended examples for using the packages:167

• doc – the primary documentation source files. These files are written in the markup language168

reStructured Text3, and are then converted to html files using Sphinx4. Other documentation169

such as drafts of this paper are also found in this repository.170

• clawpack.github.com – the html files created by Sphinx in the doc repository are pushed to171

this repository, and are then automatically served on the web. These appear at http://www.172

clawpack.org, which is configured to point to http://clawpack.github.com. The name of this173

repository follows GitHub convention for use with GitHub Pages5.174

• apps – applications contributed by developers and users that go beyond the introductory examples175

included in the core repositories.176

The Clawpack 4.x code is also available in the repository clawpack-4.x but is no longer under177

development.178

2.1 Version Control179

The Clawpack team uses the Git distributed version control system to coordinate development of180

each major project. The repositories are publicly coordinated under the Clawpack organization on181

GitHub6 with the top-level clawpack super-repository responsible for hosting build and installation182

tools, as well as providing a synchronization point for the other repositories. The remaining “core183

Clawpack repositories” listed above are subrepositories of the main clawpack organization.184

3http://www.sphinx-doc.org/en/stable/rest.html
4http://sphinx-doc.org
5https://pages.github.com/
6https://github.com/clawpack
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GitHub itself is a free provider of public Git repositories. In addition to repository hosting, the185

Clawpack team uses GitHub for issue tracking, code review, automated continuous integration via186

Travis CI7, and test coverage tracking via Coveralls8 for the Python-based modules. The issue tracker on187

GitHub supports cross-repository references, simplifying communication between Clawpack developer188

sub-teams. The Travis CI service, which provides free continuous integration for publicly developed189

repositories on GitHub, runs Clawpack’s test suites through nose9 on proposed changes to the code190

base, and through a connection to the Coveralls service, reports on any test failures as well as changes191

to test coverage.192

2.2 Submodules193

The clawpack “super-repository” serves two purposes. First, it contains installation utilities for each194

of the sub-projects. Second, it serves as a synchronization point for the project repositories. The195

remainder of this section provides more details on how Git submodules enable this synchronization.196

Whenever possible, teams of software developers coordinate their development in a single unified197

repository. In situations where this isn’t possible, one option provided by Git is the submodule, which198

allows a super-repository (in this case, clawpack), to nest sub-repositories as directories, with the199

ability to capture changes to sub-repository revisions as new revisions in the super-repository. Under200

the hood, the super-repository maintains pointers to the location of each submodule and its current201

revision. The submodule directories contain normal Git repositories, all of the coordination happens in202

the super-repository.203

Each of the other core Clawpack repositories listed above is a submodule of the clawpack repos-204

itory. Every commit that creates a new revision to the clawpack repository describes top-level in-205

stallation code as well as the revisions of each of the submodules. In this way, Git submodules allow206

Clawpack team members to work asynchronously on independent projects while reusing and main-207

taining common software infrastructure.208

Typically theClawpack developers advance the master development branch of the top-level clawpack209

repository any time a major feature is added or a bug is fixed in one of the upstream projects that might210

a↵ect code in other repositories. By checking out a particular revision in the clawpack repository and211

performing a git submodule update, all repositories can be updated to versions that are intended to212

be consistent and functional.213

In particular, when Travis CI runs the regression tests in any project repository (performed auto-214

matically for any pull request), it starts by installing Clawpack on a virtual machine and the current215

head of the clawpack/master branch indicates the commit from each of the other projects that must216

be checked out before performing the tests. If the clawpack repository has not been properly updated217

following changes in other upstream projects, these tests may fail.218

Any new release of Clawpack is a snapshot of one particular revision of clawpack and the related219

revisions of all submodules. These particular revisions are also tagged for future reference with consistent220

names, such as v5.3.1. (Git tags simply provide a descriptive name for a particular revision rather221

than having to refer to a Git hash code.)222

2.3 Contributing223

Scientists who program are often discouraged from sharing code due to existing reward mechanisms224

and the fear of being “scooped”. However, recent studies indicate that scientific communities that225

openly share and develop code have an advantage because each researcher can leverage the work of226

many others [53], and that paper citation rates can be increased by sharing code [54] and/or data [49].227

Moreover, journals and funding agencies are increasingly requiring investigators to share code used to228

obtain published results. One of the goals of the Clawpack project is to facilitate code sharing by229

7https://travis-ci.org/
8http://coveralls.io
9https://nose.readthedocs.org
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users, by providing an easy mechanism to refer to a specific version of the Clawpack software and230

ensuring that past versions of the software remain available on a stable and citable platform.231

On the development side, we expect that the open source development model with important dis-232

cussions conducted in public will lead to further growth of the developer community and additional233

contributions from users. Over the past twenty years, many users have written code extending Claw-234

pack with new Riemann solvers, algorithms, or domain-specific problem tools. Unfortunately, much235

of this code did not make it back into the core software for others to use. Many of the development236

changes in Clawpack 5.x were done to encourage contributions from a broader community. We have237

begun to see an increase in contributions from outside the developers’ groups, and hope to encourage238

more of this in the future.239

The primary development model is typical for GitHub projects: a contributor forks the repository240

on GitHub, then develops improvements in a branch that is pushed to her own fork. She issues a “pull241

request” (PR) when the branch is ready to be merged into the main repository. Increasingly, contributors242

are also using PRs as a way to conveniently post preliminary or prototype code for discussion prior to243

further development, often marked WIP for “work in progress” to signal that it is not ready to merge.244

After a PR is issued, other developers, including one or more of the maintainers for the corresponding245

project, review the code. The Travis CI server also automatically runs the tests on the proposed new246

code. The test results are visible on the GitHub page for the PR. Usually there is some iteration as247

developers suggest improvements or discuss implementation choices in the code. Once the tests are248

passing and it is agreed that the code is acceptable, a maintainer merges it.249

An additional benefit of using the GitHub platform is that any version of the code is accessible250

either through the command line git interface, through the GitHub website, or a number of available251

applications on all widely used platforms. More important however is the ability to tag a particular252

version of a repository with a digital object identifier (DOI) via GitHub and Zonodo10. The combination253

of these abilities provides the capability for Clawpack to not only be accessible at any version but also254

allows for the citability of versions of the code used for particular results within the scientific literature.255

2.4 Releases256

Although Clawpack is continuously developed, it is convenient for users to be able to install stable257

versions of the software. The Clawpack developers provide these releases through two distribution258

channels: GitHub and the Python Package Index (PyPI). Full source releases are available on GitHub.259

Alternatively, the PyClaw subproject and its dependencies can be installed automatically using a PyPI260

client such as pip.261

Clawpack does not follow a calendar release cycle. Instead, releases emerge when the developer262

community feels enough changes have accumulated since the last release to justify the cost of switching to263

a new release. For the most part, Clawpack releases are versioned using an M.m.p triplet, representing264

the major (M), minor (m), and patch (p) versions respectively. In the broader software engineering265

community, this is often referred to as semantic versioning. Small changes that fix bugs and cosmetic266

issues result in increments to the patch-level. Backwards-compatible changes result in an increase to the267

minor version. The introduction of backwards-incompatible changes require that the major version be268

incremented. In addition, the implementation of significant new algorithms or capability will also justify269

the increment of major release number, and is often an impetus for providing another release to the270

public. In practice, the Clawpack software has frequently included changes in minor version releases271

that were not entirely backwards compatible, but these have been relatively minor and documented in272

the release notes. Major version numbers have changed infrequently and related to major refactoring273

of the code as in going from 4.x to 5.0.274

Staring with Version 5.3.1, the tarfiles for Clawpack releases will also be archived on Zenodo11, a275

data repository hosted at CERN that issues DOIs so that the software version can be cited with a276

10For a guide on creating a DOI to a particular version of software see http://guides.github.com/activities/

citable-code/
11https://zenodo.org
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permanent link [52] that does not depend on the long-term existence of GitHub.277

2.5 Dependencies278

Running any part of Clawpack requires a Python interpreter and the common Python packages numpy279

[30], f2py [48], matplotlib [27], as well as (except for the pure-Python 1D code) GNU make and a Fortran280

compiler. Other dependencies are optional, depending on which parts of Clawpack are to be used:281

• IPython/Jupyter if using the notebook interfaces [47].282

• PETSc [4], if using distributed parallelism in PyClaw.283

• OpenMP, if using shared-memory parallelism in AMRClaw or GeoClaw.284

• MATLAB, if using the legacy visualization tools.285

3 Advances286

This section describes the major changes in each of the code repositories in moving from Clawpack287

4.x to the most recent version 5.3. A number of the repositories have seen only minor changes as the288

bulk of the development is focused on current research interests. There are a number of minor changes289

not listed here and the interested reader is encouraged to refer to the change logs12 and the individual290

Clawpack Git repositories for a more complete list.291

3.1 Global Changes292

Substantial redesign of the Clawpack code base was performed in the move from Clawpack 4.x to293

5.x. Major changes that a↵ected all aspects of the code include:294

• The interface to the Clawpack Riemann solvers was changed so that one set of solvers can295

be used for all versions of the code (including PyClaw via f2py13). Rather than appearing in296

scattered example directories, these Riemann solvers have all been collected into the new riemann297

repository. Modifications to the calling sequences were made to accommodate this increased298

generality.299

• Calling sequences for a number of other Fortran subroutines were also modified based on experi-300

ences with the Clawpack 4.x code. These can also be used as a stand-alone product for those301

who only want the Riemann solvers.302

• Python front-ends were redesigned to more easily specify run-time options for the solver and vi-303

sualization. The Fortran variants (ClassicClaw, AMRClaw, and GeoClaw) all use a Python304

script to facilitate setting input variables. These scripts create text files with a rigidly specified305

format that are then read in when the Fortran code is run. The interface now allows updates to306

the input parameters while maintaining backwards compatibility.307

• The indices of the primary conserved quantities were reordered. In Clawpack 4.x, the mth308

component of a system of equations in grid cell (i, j) (in two dimensions, for example), was stored309

in q(i,j,m). In order to improve cache usage and to more easily interface with PETSc [4], a global310

change was made to the ordering so that the component number comes first; i.e. q(m,i,j). A311

seemingly minor change like this a↵ects a huge number of lines in the code and cannot easily be312

automated. The use of version control and regression tests was crucial in the successful completion313

of the project.314

12http://www.clawpack.org/changes.html
13http://docs.scipy.org/doc/numpy-dev/f2py
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3.2 Riemann: A Community-Driven Collection of Approximate Riemann315

Solvers316

The methods implemented in Clawpack, and all modern Godunov-type methods for hyperbolic PDEs,317

are based on the solution of Riemann problems as discussed in Section 1.2. Whereas most existing318

codes for hyperbolic PDEs use Riemann solvers to compute fluxes, Clawpack Riemann solvers instead319

compute the waves (or discontinuities) that make up the Riemann solution. In the unsplit algorithm,320

Clawpack also makes use of transverse Riemann solvers, responsible for computing transport between321

cells that are only corner (in 2d) or edge (in 3d) adjacent.322

For nonlinear systems, the exact solution of the Riemann problem is computationally costly and323

may involve both discontinuities (shocks and contact waves) and rarefactions. It is almost always324

preferable to employ inexact Riemann solvers that approximate the solution using discontinuities only,325

with an appropriate entropy condition. The solvers available in Clawpack are all approximate solvers,326

although one could easily implement their own exact solver and make it available in the format needed327

by Clawpack routines.328

A common feature in all packages in the Clawpack suite is the use of a standard interface for329

Fortran Riemann solver routines. This ensures that new solvers or solver improvements developed for330

one package can immediately be used by all packages. To further facilitate this sharing and to avoid331

duplication, Riemann solvers are (with rare exceptions) not maintained under the other packages but332

are collected in a single repository named riemann. Users who develop new solvers for Clawpack are333

encouraged to submit them to the Riemann repository.334

In the Fortran-based packages (Classic, AMRClaw, and GeoClaw) the Riemann solver is selected at335

compile-time by modifying a problem-specific Makefile. In PyClaw, the Riemann solver to be used is336

selected at run-time. This is made possible by compiling all of the Riemann solvers (when PyClaw is337

installed) and generating Python wrappers with f2py. For PyClaw, riemann also provides metadata338

(such as the number of equations, the number of waves, and the names of the conserved quantities) for339

each solver so that setup is made more transparent.340

3.3 ClassicClaw341

The classic repository contains code implementing the wave propagation algorithm on a single uniform342

grid, in much the same form as the original Clawpack 1.0 version of 1994 but with various enhance-343

ments added through the years. Following the introduction of Clawpack 4.4 the three-dimensional344

routines were left out of the Python user interfaces and plotting routines. These have been reintroduced345

in Clawpack 5. Additionally the OpenMP shared-memory parallelism capabilities have been extended346

to the three-dimensional code.347

3.4 AMRClaw348

Fortran code in the AMRClaw repository performs block-structured adaptive mesh refinement [6, 7]349

for both Clawpack and GeoClaw applications. The algorithms implemented in AMRClaw are350

discussed in detail in [9, 41], but a short description is given here to set the stage for a description351

of recent changes. This type of refinement solves the PDE on a hierarchy of logically rectangular352

grids. One (or more) level 1 grids comprise the entire domain, while grids at finer level are created and353

destroyed (as opposed to moving these grids) to follow important features in the solution.354

AMRClaw includes the functionality for:355

• Coordinating the flagging of points where refinement is needed, with a variety of criteria possible356

for flagging cells that need refinement from each level to the next finer level (including Richardson357

extrapolation, gradient testing, or user-specified criteria)14,358

14See http://www.clawpack.org/flag.html
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Figure 1: An illustration showing grid cells on levels one and two, and only grid outlines on levels three
and four.

• Organizing the flagged points into e�cient grid patches at the next finer level, using the algorithm359

of [11],360

• Interpolating the solution to newly created fine grids and initializing auxiliary data (topography,361

wind velocity, metric data and so on) on these grids,362

• Averaging fine grid solutions to coarser grids,363

• Orchestrating the adaptive time stepping (i.e. sub-cycling in time),364

• Interpolating coarse grid solution to fine grid ghost cells, and365

• Maintaining conservation at patch boundaries between resolution levels.366

AMRClaw now allows users to specify “regions” in space-time [x1, x2]⇥ [y1, y2]⇥ [t1, t2] in which367

refinement is forced to be at least at some level L1 and is allowed to be at most L2. This can be368

useful for constraining refinement, e.g. allowing or ensuring resolution of only a small coastal region369

in a global tsunami simulation. Previously the user could enforce such conditions by writing a custom370

flagging routine, but now this is handled in a general manner so that the parameters above can all be371

specified in the Python problem specification. Multiple regions can be specified, and a simple rule is372

used to determine the constraints at a grid cell that lies in multiple regions.373

Auxiliary arrays are often used in Clawpack to store data that describes the problem and the374

routine. The routine setaux must then be provided by the user to set these values each time a new grid375

patch is created. For some applications computing these values can be time-consuming. In Clawpack376

5.2, this code was improved to allow reuse of values from previous patches at the same level where377

possible at each regridding time. This is backward compatible, since no harm is done if previously378

written routines are used that still compute and overwrite instead of checking a mask.379

In Clawpack 5.3 the capability to specify spatially varying boundary conditions was added. For380

a single grid, it is a simple matter to compute the location of the ghost cells that extend outside the381

computational domain and set them appropriately. With AMR however, the boundary condition routine382

can be called for a grid located anywhere in the domain, and may contain fewer or larger numbers of383

ghost cells. For this reason, the boundary condition routines do not assume a fixed number of ghost384

cells.385

Anisotropic refinement is allowed in both two and three dimensions. This means that the spatial and386

temporal refinement ratios can be specified independently from one another (as long as the temporal387

refinement satisfies the CFL condition). In addition, capabilities have been added to automatically388

select the refinement ratio in time on each level based on the CFL condition. This has only been389
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Figure 2: AMRClaw example demonstrating a shock-bubble interaction in the Euler equations of com-
pressible gas-dynamics at two times, illustrating the need for adaptive refinement to capture localized
behavior. There are two 20 ⇥ 10 ⇥ 10 grids at level 1. They are refined where needed by factors of 4
and then 2 in this 3-level run.

implemented in GeoClaw where the wave speed in the shallow water equations depends on the local390

depth. The finest grids are often located only in shallow coastal regions, so a large refinement ratio in391

space does not lead to a large refinement ratio in time.392

AMRClaw has been parallelized using OpenMP directives. The main paradigm in structured AMR393

is an outer loop over levels of refinement, and in inner loop overall grids at that level, where the same394

operation is performed on each grid (i.e. taking a time step, finding ghost cells, conservation updates,395

etc.). This inner loop is parallelized using a parallel for loop construct one thread is assigned to396

operate on one grid. Dynamic scheduling is used with a chunk size of one. To help with load balancing,397

grids at each level are sorted from largest to smallest, using the total number of cells in the grid as an398

indicator of work. In addition there is a grids are limited to a maximum of 32 cells in each dimension,399

otherwise they are bisected until this condition is met. Note that this approach causes a memory bulge.400

Each thread must have its own scratch arrays to save the incoming and outgoing waves and fluxes for401

future conservation fix-ups. The bulge is directly proportional to the number of threads executing.402

For stack-based memory allocation per thread, the use of the environment variable OMP STACKSIZE to403

increase the limit may be necessary.404

Fig. 2 shows two snapshots of the solution to a three-dimensional shock-bubble interaction problem405

found in the Clawpack apps repository, illustrating localized phenomena requiring adaptive refine-406

ment. In Fig. 3 we show scalability tests and some timings for this example, when run on a 40 core407

Intel Xeon Haswell machine (E5-2670v3 at 2.3 GHz), using KMP AFFINITY compact with one thread408

per core. For timing purposes, the only modifications made to the input parameters was to turn o↵409

check-pointing and graphics output. The plot on the left shows that most of the wall clock time is in the410

integration routine (stepgrid), which closely tracks the total time. The second chunk of time is in the411

regridding, which contains algorithms that are not completely scalable. Very little time is in the filling412

of ghost cells, mostly from other patches but also includes those at domain boundaries. The e�ciency413

is above 80% until 24 cores, then drops o↵ dramatically. Note that there are only two grids on level,414

and an average of 22.8 level 2 grids. Most of the work is on level 3 grids, where there are an average415

of 138.1 grids over all the level 3 timestep. This is very coarse for large numbers of cores (hence the416

dropo↵ in e�ciency). At 40 cores, there are less than 4 grids per core, and the grids are very di↵erent417

sizes.418

The target architecture for AMRClaw and GeoClaw are multi-core machines. PyClaw on the419

other hand scales to tens of thousands of cores using MPI via PETSc [4] but is not adaptive.420
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Figure 3: Left is strong scaling results for the AMRClaw example shown in Fig. 2. Right is plot of
e�ciency based on total computational time.

3.5 GeoClaw421

The GeoClaw branch of Clawpack was developed to solve the two-dimensional shallow water equa-422

tions over topography for modeling tsunami generation, propagation, and inundation. The AMRClaw423

code formed the starting point but it was necessary to make many modifications to support the require-424

ments of this application, as described briefly below. This code originated with the work of George425

[19, 20, 21] and was initially called TsunamiClaw. Later it became clear that many other geophysical426

flow applications have similar requirements and the code was generalized as GeoClaw.427

One of the major issues is the treatment of wetting and drying of grid cells at the margins of the428

flow. The handling of dry states in a Riemann solver is di�cult to handle robustly, and has gone429

through several iterations. GeoClaw must also be well-balanced in order to preserve steady states, in430

particular the “ocean at rest”. To achieve this, the source terms in the momentum equations arising431

from variations in topography are incorporated into the Riemann solver rather than using a fractional432

step splitting approach. This is critical for modeling waves that have very small amplitudes relative to433

the variations in the depth of the ocean. See [40] for a general discussion of such methods and [20, 21]434

for details of the Riemann solver used in GeoClaw. Other features of GeoClaw include the ability to435

solve the equations in latitude–longitude coordinates on the surface of the sphere, and the incorporation436

of source terms modeling bottom friction using a Manning formulation. More details about the code437

and tsunami modeling applications can be found in [8, 41]. In 2011, a significant e↵ort took place to438

verify and validate GeoClaw against the US National Tsunami Hazard Mitigation Program (NTHMP)439

benchmarks [25]. NTHMP approval of the code allowsGeoClaw to be used in hazard mapping projects440

that are funded by this program or other federal and state agencies, e.g. [23, 24]. One such project is441

illustrated in Fig. 4.442

In addition to a variety of tsunami modeling applications, GeoClaw has been used to solve dam443

break problems in steep terrain [18], storm surge problems [44] (see Fig. 5), and submarine landslides444

[34]. The code also formed the basis for solving the multi-layer shallow water equations for storm surge445

modeling [42, 43], and is currently being extended further to handle debris flow modeling in the packages446

D-Claw [28, 22] (see Figs. 6 and 7).447

Nearly one quarter of the files in the AMRClaw source library have to be modified for GeoClaw.448

There are currently 113 files in the AMRClaw 2D library, of which 26 are replaced by a GeoClaw-449

specific files of the same name in the GeoClaw 2D library. For example, to preserve a flat sea surface450

when interpolating, it is necessary to interpolate the surface elevation (topography plus water depth)451

rather than simply interpolating the depth component of the solution vector as would normally be done452

in AMRClaw. An additional 24 files in the GeoClaw shallow water equations library handle other453
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complications introduced by the need to model tsunamis and storm surge.454

Several other substantial improvements in the algorithms implemented in GeoClaw have been455

made between versions 4.6 and 5.3.0, including:456

• In depth-averaged flow, the wave speed and therefore the CFL condition depends on the depth.457

As a result, flows in shallow water that have been refined spatially may not need to be refined in458

time. This “variable-time-stepping” was easily added along with the anisotropic capabilities that459

were added to AMRClaw.460

• The ability to specify topography via a set of topo files that may cover overlapping regions at461

di↵erent resolutions has been added. The finite volume method requires cell averages of topogra-462

phy, computed by integrating a piecewise bilinear function constructed from the input topo files463

over each grid cell. In Clawpack 5.1.0, this was improved to allow an arbitrary number of nested464

topo grids. When adaptive mesh refinement is used, regridding may take place every few time465

steps. Improvements were made in 5.2.0 so that topography could be copied rather than always466

being recomputed in regions where there is an existing old grid.467

• The user can now provide multiple dtopo files that specify changes to the initial topography at468

a series of times. This is used to specify sea-floor motion during a tsunamigenic earthquake, but469

can also be used to specify submarine landslide motion or a failing dam, for example.470

• A number of new Python modules has been developed to assist the user in working with topo471

and dtopo files. These are documented in the Clawpack documentation and several of them are472

illustrated with Jupyter notebooks found in the Clawpack Gallery.473

• New capabilities were added in 5.0.0 to monitor the maximum of various flow quantities over474

a specified time range of a simulation. This capability is crucial for many applications where475

the maximum flow depth at each point, maximum current velocities in a harbor, or maximum476

momentum flux (a measure of the hydrodynamic force that would be exerted by the flow on a477

structure) is desired. Arrival time of the first wave at each point can also be monitored. Such478

capabilities were included in the 4.x version of the code, but were more limited and did not always479

perform properly near the edges of refinement patches. In Version 5.2 these routines were further480

improved and extended. The user can specify a grid of points on which to monitor values, and481

the new code is more flexible in allowing one-dimensional grids (e.g. a transect), two-dimensional482

rectangular grids, or an arbitrary set of points15.483

3.6 PyClaw484

PyClaw is an object-oriented Python package that provides a convenient way to set up problems485

and call the algorithms of Clawpack. It grew from what was initially a set of data structures and486

file IO routines that are used by the other Clawpack codes and by VisClaw. These routines were487

released in an early form in later 4.x versions of Clawpack. Those releases also included a fully-488

functional implementation of the 1D classic algorithm in pure Python. That implementation still exists489

in PyClaw and is useful for understanding the algorithm.490

The current release of PyClaw includes access to the classic algorithms as well as the high-order491

algorithms introduced in SharpClaw [32] (i.e., WENO reconstruction and Runge–Kutta integrators)492

and can be used on large distributed-memory parallel machines. For the latter capability, PyClaw493

relies on PETSc [4]. Lower-level code (whatever gets executed repeatedly and needs to be fast) from494

the earlier Fortran Classic and SharpClaw codes is automatically wrapped at install time using f2py.495

Recent applications of PyClaw include studies of laser light trapping by moving refractive index496

perturbations [51], instabilities of weakly nonlinear detonation waves [17], and e↵ective dispersion of497

nonlinear waves via di↵raction in periodic materials [33]. Two of these are depicted in Fig. 8.498

15Described in http://www.clawpack.org/fgmax.html
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Figure 4: Gray’s Harbor showing Westport, WA on southern peninsula. (Google map data and image,
2016.) (b) Simulation of a potential magnitude 9 Cascadia Subduction Zone event, 40 minutes after the
earthquake. (c) Design for new Ocosta Elementary School in Westport, based in part on GeoClaw
simulations [23]. Image courtesy of TCF Architecture.
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Package Threads Wall Time Core Time

ADCIRC 4000 35 minutes 2333 hours
GeoClaw 4 2 hours 8 hours

Figure 5: Top Left: A snapshot of a GeoClaw storm surge simulation of Hurricane Ike at landfall.
Top Right: Tide gauge data computed from GeoClaw and adcirc along with observed data at the
same location. Bottom: Computational e↵ort and timings for GeoClaw and adcirc. From [44].

3.6.1 Librarization and extensibility499

Scientific software is easier to use, extend, and integrate with other tools when it is designed as a500

library [12]. Clawpack has always been designed to be extensible, but PyClaw takes this further in501

several ways. First, it is distributed via a widely-used package management system, pip. Second, the502

default installation process (“pip install clawpack”) provides the user with a fully-compiled code503

and does not require setting environment variables. Like other Clawpack packages, PyClaw provides504

several “hooks” for users to plug in custom routines (for instance, to specify boundary conditions). In505

PyClaw, these routines – including the Riemann solver itself – are selected at run-time, rather than at506

compile-time. These routines can be written directly in Python, or (if they are performance-critical) in a507

compiled language (like Fortran or C) and wrapped with one of the many available tools. Problem setup508

(including things like initial conditions, algorithm selection, and output specification) is also performed509

at run-time, which means that researchers can bypass much of the slower code-compile-execute-post-510

process cycle. It is intended that PyClaw be easily usable within other packages (without control of511

main()).512

3.6.2 Python geometry513

PyClaw includes Python classes for describing collections of structured grids and data on them. These514

classes are also used by the other codes andVisClaw, for post-processing. A mesh in Clawpack always515

consists of a set of (possibly mapped) tensor-product grids (interval, quadrilateral, or hexahedral), also516

referred to as patches. At present, PyClaw solvers operate only on a single patch, but the geometry517

and grids already incorporate multi-patch capabilities for visualization in AMRClaw and GeoClaw.518

3.6.3 PyClaw solvers519

PyClaw includes an interface to both the Classic solvers (already described above) and those of Sharp-520

Claw [31]. SharpClaw uses a traditional method-of-lines approach to achieve high-order resolution in521
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Figure 6: (a) Photograph of the 2010 Mt. Meager debris-flow deposit, from [2]. (b) Simulated debris
flow, from D. George.

Figure 7: Observed (yellow line) and computed (blue) landslide at Oso, WA in 2014 [29].

space and time. Spatial operators are discretized first, resulting in a system of ODEs that is then solved522

using Runge–Kutta or linear multistep methods. The spatial derivatives are computed using a weighted523

essentially non-oscillatory (WENO) reconstruction from cell averages, which suppresses spurious oscilla-524

tions near discontinuities. The WENO routines in SharpClaw were generated by PyWENO16, which525

is a standalone package that generates WENO routines.526

The default time stepping routines in SharpClaw are strong stability preserving (SSP) Runge–527

Kutta methods of order two to four. Some of the methods use extra stages in order to allow more528

e�cient time stepping with larger CFL numbers. Time stepping in SharpClaw has recently been529

augmented to include linear multistep methods with variable step size. These methods use a time step530

size selection that ensures the strong stability preserving property, as described in [26].531

3.6.4 Parallelism532

PyClaw includes a distributed parallel backend that uses PETSc through the Python wrapper petsc4py.533

The parallel code uses the same low-level routines without modification. In the high-level routines, only534

a few hundred lines of Python code deal explicitly with parallel communication, in order to transfer535

ghost cell information between subdomains and to find the global maximum CFL number in order to536

adapt the time step size. For instance, the computation shown in the right part of Fig. 8 involved more537

16http://github.com/memmett/PyWENO
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Figure 8: Left: A two-dimensional detonation wave solution of the reactive Euler equations, showing
transverse shocks that arise from instabilities; see [17]. Right: Dispersion of waves in a layered medium
with matched impedance and periodically-varying sound speed; see [33].

than 120 million degrees of freedom and was run on two racks of the Shaheen I BlueGene/P supercom-538

puter. The code has been demonstrated to scale with better than 90% e�ciency in even larger tests on539

tens of thousands of processors on both the Shaheen I (BlueGene/P) and Shaheen II (Cray XC40) su-540

percomputers at KAUST. A hybrid MPI/OpenMP version is already available in a development branch541

and will be included in future releases.542

3.7 VisClaw : Visualizing Clawpack output543

A practical way to visualize the results of simulations is essential to any software package for solv-544

ing PDEs. This is particularly true for simulations making use of adaptive mesh refinement, since545

most available visualization packages do not have tools that conveniently visualize hierarchical AMR546

data. VisClaw provides support for all of the main Clawpack submodules, including ClassicClaw,547

AMRClaw, PyClaw and GeoClaw.548

From the first release in 1994, Clawpack has included tools for visualizing the output of Clawpack549

and AMRClaw runs. Up until the release of version Clawpack 4.x, these visualization tools consisted550

primarily of Matlab routines for creating one, two and three dimensional plots including pseudo-color551

plots, Schlieren plots, contour plots and scatter plots, including radially or spherically symmetric data.552

Built-in tools were also available for handling one, two and three-dimensional mapped grids. Starting553

with version 4.x, however, it was recognized that a reliance on proprietary software for visualization554

prevented a sizable potential user base from making use of the Clawpack software. The one and two555

dimensional plotting routines were converted from Matlab to matplotlib, a popular open source Python556

package for producing publication quality graphics for one and two dimensional data [27].557

With the development of Clawpack Version 5 and above, Python graphics tools have been collected558

into the VisClaw repository. The VisClaw tools extend the functionality of the Version 4.x Python559

routines for creating one and two dimensional plots, and adds several new capabilities. Chief among560

these are the ability to generate output to webpages, where a series of plots can be viewed individually or561

as an animated time sequence using the Javascript package17 (which was motivated by code in an earlier562

version of Clawpack). TheVisClawmodule Iplotclaw provides interactive plotting capabilities from563

the Python or IPython prompt. Providing much of the same interactive capabilities as the original564

Matlab routines, Iplotclaw allows the user to step, interactively, through a time sequence of plots,565

jump from one frame to another, or interactively explore data from the current time frame.566

17https://github.com/jakevdp/JSAnimation
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3.7.1 Tools for visualizing geo-spatial data produced by GeoClaw567

The geo-spatial data generated by GeoClaw has particular visualization requirements. Tsunami or568

storm surge simulations are most useful when the plots showing inundation or flooding levels are overlaid569

onto background bathymetry or topography. Supplementary one dimensional time series data (e.g.570

gauge data) numerically interpolated from the simulation at fixed spatial locations are most useful when571

compared graphically to observational data. Finally, to more thoroughly analyze the computational572

data, simulation data should be made available in formats that can be easily exported to GIS tools573

such as ArcGIS18 or the open source alternative QGIS19. For exploration of preliminary results or574

communicating results to non-experts, Google Earth is also helpful.575

The latest release of Clawpack includes many specialized VisClaw routines for handling the above576

issues with plotting geo-spatial data. Topography or bathymetry data that was used in the simulation577

will be read by the graphing routines, and, using distinct colormaps, both water and land can be viewed578

on the same plot. Additionally, gauge locations can be added, along with contours of water and land.579

One dimensional gauge plots are also created, according to user-customizable routines. In these gauge580

plotting routines, users can easily include observational data to compare with GeoClaw simulation581

results.582

In addition to HTML and Latex formats available for all Clawpack results, VisClaw will now also583

produce KML and KMZ files suitable for visualizing results in Google Earth. Using the same matplotlib584

graphics routines, VisClaw creates PNG files that can be used as GroundOverlay features in a KML585

file. Other features, such as gauges, borders on AMR grids, and user specified regions can also be shown586

on Google Earth. All KML and PNG files are compressed into a single KMZ file that can be opened587

directly in Google Earth or made available on-line. While VisClaw does not have any direct support588

for ArcGIS or QGIS, the KML files created for Google Earth can be edited for export, along with589

associated PNG files to these other GIS applications.590

3.7.2 Matlab plotting routines591

The Matlab plotting tools available in early versions of Clawpack are still included in VisClaw.592

While most of the one and two dimensional capabilities available originally in the Matlab suite have593

been ported to Python and matplotlib, the original Matlab routines are still available in the Matlab594

suite of plotting tools. Other plotting capabilities, such as two dimensional manifolds embedded in three595

dimensional space, or three dimensional plots of fully three-dimensional data are only available in the596

Matlab routines in a way that interfaces directly with Clawpack. More advanced three-dimensional597

plotting capabilities are planned for future releases of VisClaw.598

4 Conclusions599

Clawpack has evolved over the past 20 years from its genesis as a small and focused software package600

that two core developers could manage without version control. It is now an ecosystem of related projects601

that share a core philosophy and some common code (notably Riemann solvers and visualization tools),602

but that are aimed at di↵erent user communities and that are developed by overlapping but somewhat603

distinct groups of developers scattered at many institutions. The adoption of better software engineering604

practices, in particular the use of Git and GitHub as an open development platform and the use of pull605

requests to discuss proposed changes, has been instrumental in facilitating the development of many of606

the new capabilities summarized in this paper. These developer facing improvements of course a↵ect607

the user as well since better and faster development cycles means better and faster implementation608

of features. The user facing features already implemented in version 5 have opened up the use of609

Clawpack to a broader audience.610

18http://www.arcgis.com
19http://www.qgis.org
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4.1 Future Plans611

The Clawpack development team continues to look forward to new ideas and e↵orts that will allow612

great accessibility to the project as well as new capabilities that the core development team has not613

thought of. To this end a number of the broad e↵orts that are being considered for the next major614

release of Clawpack include615

• An increased librarization e↵ort with the Fortran based sub-packages,616

• An extensible and more accessible interface to the Riemann solvers,617

• An e↵ort to allow PyClaw and the Clawpack Fortran packages to rely on more of the same618

code-base,619

• An increased emphasis on a larger development community,620

• More support for new frameworks such as ForestClaw [13],621

• Adjoint error estimation for flagging cells to increase the e�ciency of the AMR codes [15],622

• A refactoring of the visualization tools in VisClaw, along with support for additional backends,623

particularly for three-dimensional results (e.g. Mayavi20, VisIt21, ParaView22, or yt23).624
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