
Evaluating Active Learning with
Cost and Memory Awareness

Dmitry Duplyakin
School of Computing

University of Utah
Salt Lake City, UT 84112, USA

dmitry.duplyakin@utah.edu

Jed Brown
Department of Computer Science

University of Colorado
Boulder, CO 80309, USA

jed.brown@colorado.edu

Donna Calhoun
Department of Mathematics

Boise State University
Boise, ID 83725 USA

donnacalhoun@boisestate.edu

Abstract—Active Learning (AL) is a methodology from Ma-
chine Learning and Design of Experiments (DOE) in which
the quantities of interest are measured sequentially and the
corresponding surrogate models are constructed incrementally.
AL provides compelling optimizations over static DOE in ap-
plications with engineering processes where the cost of individ-
ual experiments is significant. It also helps perform series of
computer experiments in parameter sweeps and performance
analysis studies. One of the non-trivial tasks in the design of AL
systems is the selection of algorithms for cost-efficient exploration
of the input spaces of interest: AL needs to balance “exploitation”
of experiments with modest costs and careful “exploration” of
expensive configurations. Finding this balance in an automatic
and general manner is challenging yet desirable in practice.

In this paper, we investigate the application of AL algorithms
to Adaptive Mesh Refinement (AMR) performed on a supercom-
puter. We use AL in conjunction with Gaussian Process Regres-
sion for the incremental modeling of cost and memory usage
of a series of AMR simulations of a shock-bubble interaction
phenomenon. In the studied 5-dimensional input parameter
space – with physical, numerical, and machine parameters –
we allow AL to guide experimentation across hundreds of
configurations. We develop and evaluate a novel multi-objective
AL experiment selection algorithm which prioritizes cost-efficient
exploration of available configurations and at the same time
avoids simulations that violate memory constraints.

Index Terms—Performance Modeling, Active Learning, Gaus-
sian Process Regression, Adaptive Mesh Refinement

I. INTRODUCTION

First introduced in the 1980s, Adaptive Mesh Refinement
(AMR) is a popular technique in many areas of modern science
and engineering. AMR refers to the methods which increase the
resolution of the simulation in the regions of the computational
domain where the solution exhibits features of interest. In
a common approach to AMR, the computational domain is
decomposed into logically Cartesian regions consisting of
coarse (lower resolution), or fine (higher resolution) meshes.
Depending on the implementation, finer regions may cover
portions of the coarser grids (patch-based AMR). Alternatively,
the decomposition may be a true partitioning of the domain
(tree-based AMR). Simulations based on AMR typically see a
significant reduction in computational and storage requirements
when compared with solutions obtained on uniformly high-
resolution meshes.

With AMR, it is difficult to predict how much refinement
will be applied in a particular simulation. User-defined criteria
for refinement may result in drastically varying simulation
runtimes and memory usage. Even experienced users are
likely to struggle with choosing the sufficient amount of
computational resources that will allow them to meet their
computing deadlines. As shown in Fig. 1, enabling additional
levels of refinement in AMR reveals finer features of the
simulated phenomenon. At the same time, the number of
refinement levels is a factor that strongly impacts performance
yet the exact corresponding growth of computational demands
is difficult to predict. Moreover, when we vary one of many
physical parameters – in the shock-bubble interaction, it could
be viscosity, size and density of the bubble, change of pressure
at the shock front, among others – we also observe drastic
changes in performance characteristics.

In real-world applications, AMR simulations run for signifi-
cant periods of time even on supercomputers and computing
clusters. Libraries such as MPI [1] and OpenMP [2] power
many AMR libraries and packages by accelerating these
computations via distributed-memory and shared-memory
parallelism, respectively. However, as the number of machines
simultaneously used for these computations increases, the cost
of these computational experiments, typically expressed in node-
hours or core-hours, also grows. Often, the total cost of desired
series of AMR simulations exceeds even large supercomputer
allocations and becomes impractical. In our modeling and the
proposed DOE, we demonstrate how the magnitude and the
variability of performance characteristics can be considered
and describe the practical approach to selection of the most
informative and cost-efficient simulations. Our approach aims
to avoid running overly expensive computations if their
performance characteristics can be predicted with sufficient
accuracy. This optimization is vital in applications with modest
time-to-solution and total compute budget constraints.

We extend our previous work described in [3]. We use a
combination of Gaussian Process Regression (GPR) [4] and
Active Learning (AL) [5] as a method that allows us to obtain
high-confidence predictions across a large input space without
the need for a static, and most likely inefficient, experiment
design. In this paper, we describe how we use this approach and
leverage the tools we have developed in the context of predictive

Fig. 1: Visualization of a 2D shock-bubble interaction problem
simulated using FORESTCLAW package.

(a) AMR simulation with up to 4 levels of mesh refinement.

(b) AMR simulation with up to 5 levels of mesh refinement.

(c) AMR simulation with up to 6 levels of mesh refinement.

modeling in a 5-dimensional input parameter space. These input
parameters, or features, are the number of processors used,
discretization box size, maximum level of refinement, bubble
size, and bubble density (discussed in detail in Section IV-A).
The last two are physical properties of the simulated shock-
bubble interaction phenomenon, whereas the others represent
numerical and machine properties. We analyze the simulation
cost and memory usage functions, or responses, which exhibit
rapid, unpredictable growth along multiple dimensions in the
analyzed input space. This growth occurs only at particular
combinations of the selected parameters. In the rest of this
input space, the responses change gradually or remain flat and
can be predicted accurately with little experimental data.

Practical AL for supercomputer experiments needs to not
only provide computational scientists with the cost-efficient
iterative DOE but also should mitigate the risk of selecting
simulations that will likely run out of available memory and
crash. However, we find that the state-of-the-art DOE and
AL for computer experiments, such as techniques described
in [6], [7], and [8], among others, do not incorporate memory
constraints in their decision making but focus exclusively on
the runtime. On the other hand, while the resource utilization
studies in High Performance Computing (HPC), such as [9]
and [10], describe methods for prediction of applications’
peak resident set size (RSS), such analysis does not provide
experimenters with practical guidance on which simulations
should be chosen and which are best to avoid. We aim to
bridge this gap by proposing a multi-objective AL scheme that
uses the feedback from both cost and memory models in its
experiment selections.

Our key contributions are the following:
• To the best of our knowledge, we describe the first applica-

tion of AL in the context of AMR. Ideally, AL techniques
would promote more widespread use of AMR by allowing
non-expert users to select efficient configurations in a
systematic fashion.

• We develop a multi-objective AL scheme. Unlike most
approaches applied to computer simulations, our scheme
refines the underlying models while avoiding simulations
that exceed memory constraints.

• In our simulation-based evaluation that uses AMR per-
formance measurements obtained on a supercomputer,
we characterize the developed scheme in terms of its
mistakes and the corresponding opportunity costs, as well
as describe the relevant cost-error trade-offs.

The remainder of this paper is organized as follows. In
Section II, we summarize related work. Section III presents
the mathematical constructs used for GPR and AL, and
Section IV describes the practical aspects of our implementation
of these constructs. In Section V, we present our evaluation
of AL algorithms applied to a dataset with costs and memory
usage of AMR simulations. We investigate the AL “progress”
and characterize the trade-offs associated with the developed
algorithms. We conclude the paper and outline our future work
in Section VI.

II. BACKGROUND AND RELATED WORK

A. Adaptive Mesh Refinement

There exist several approaches to AMR, including the
block-structured and the tree-based AMR (e.g., see [11], [12],
[13], [14]), as well as many software tools for AMR, such
as the libraries and packages listed at [15]. We focus on
FORESTCLAW [16], the block-structured adaptive finite volume
library for solving hyperbolic partial differential equations on
mapped, logically Cartesian meshes. To achieve scalability,
FORESTCLAW uses p4est [17], [18], a state-of-the-art library
for grid management based on the forest-of-octrees idea.

In [19], the authors describe CLAWPACK (Conservation Law
Package), an ecosystem of library and application code for solv-
ing nonlinear hyperbolic partial differential equations with high-
resolution finite volume methods based on Riemann solvers and
limiters. Adaptive versions of CLAWPACK include AMRCLAW
and FORESTCLAW. The performance and scalability of these
and alternative solutions are investigated in many studies,
including [16], [20], and [21]. To our knowledge, none of the
existing studies considers running series of AMR simulations
using AL techniques. From the modeling perspective, our
work extends beyond the common performance analysis setting
where performance metrics are treated as functions of a single
parameter - the number of processors. In contrast, we model
cost and memory responses as functions of numerical, physical,
and machine parameters in a 5-dimensional input space.

B. Gaussian Processes

Many studies propose optimizations of the surrogate model-
ing that uses GPR. In [8], the authors describe the Bayesian

treed GPR where the treed partitioning algorithms help over-
come the challenges associated with the stationarity of GPR
(i.e. the fitting with the same covariance structure applied to the
entire input space) and its growing computational complexity.
Similarly, [22] describes a method for accelerating GPR training
by partitioning the training data in local regions and learning
independent local Gaussian models inspired by the locally
weighted projection regressions. Sparse Pseudoinput Gaussian
Processes [23] and Sparse Spectrum Gaussian Processes [24]
exploit sparsity in the input point space (by inducing pseu-
doinputs) and the kernel’s spectral space, respectively, and
drastically reduce computational complexity of the modeling.
These optimizations and approximations are compatible with
the cost- and memory-aware AL described in this paper. By
optimizing the underlying surrogate modeling procedure, these
techniques will allow AL to make intelligent experiment
selection decisions based on massive experimental datasets.

C. Bayesian Optimization and Active Learning

The survey in [25] provides a detailed overview of research
and development in the area of Bayesian Optimization (BO). In
the context of our work, the most relevant concepts introduced
in BO literature include constrained BO and the cost sensitivity
analysis. In the former case, the desired experiment selection
is required to respect constraints that make certain regions of
the input space invalid. Such optimization problems can be
handled using the techniques from [26] and [27]. The latter
case refers to problems in which the cost of selected response
evaluations varies throughout the input space, which is almost
always true in studies concerning performance and scalability.
The growth of computational complexity in AMR is a notable
example of such cost variability. It is also worth mentioning the
regret function in BO. Specifically, cumulative regret functions
are constructed to characterize the optimality of selected sets
of experiments: the lower the regret, the better the set. We
formulate this concept for AMR simulations that satisfy or
exceed memory constraints and describe our evaluation results
in Section V.

The aforementioned and related BO concepts provided
inspiration for our AL development and evaluation. The key
difference about our work is about the objective of running
computational experimentats: while BO’s goal is to find a
global maximizer (or minimizer) of an unknown objective
function, we rely on the developed AL to obtain an accurate
surrogate model across the entire input space rather than
only in the neighborhood of the peak point. In other words,
even when higher values of the analyzed response are clearly
superior (e.g, for responses expressed in FLOPs or degrees
of freedom per second), the following holds: it is still worth
running experiments that are likely to be inexpensive and
informative. These experiments, combined with a smaller
number of cautiously selected expensive experiments, should
provide much richer output than the location and the value
of the peak. Thus, we develop AL algorithms that construct
surrogate models for simulation runtime and memory usage
that are reliable enough to be presented to the experimenter or

used in such analysis as solving inverse problems, numerical
integration, and multi-objective optimization.

III. MODELING AND ACTIVE LEARNING

To apply AL to the regression analysis for cost and memory
usage of AMR simulations, we use a process that produces
estimates of the mean and the standard deviation of predictive
distributions for these metrics in many possible configurations.
We use GPR, also referred to as kriging, to obtain the
desired information about the posterior probability distributions.
Below we summarize the mathematical constructs used in this
modeling. Our notation uses boldface for vectors and uppercase
boldface symbols for matrices.

LetX be the design matrix where columns represent features,
and let y be the vector of corresponding values for one of the
responses, cost or memory usage; we define specific notation
for each response at the end of this section. Our goal is to find
an underlying function f(x) which best fits the measurements
with Gaussian noise:

y = f(x) +N
(
0, σ2

n

)
, (1)

where x is a row in matrix X and σ2
n is noise variance. For

an arbitrary vector x?, not necessarily from X , the posterior
distribution for individual predictions f(x?) takes form of a
multivariate Gaussian distribution:

p(f(x?) | x?,X,y) ∼ N
(
µ?,σ

2
?x?

)
, (2)

with

µ? = k
T
?K

−1
y y,σ2

? = k??−kT?K−1
y k?,Ky =K+σ2

nI. (3)

The covariance function k(xp,xq) affects the parameter esti-
mation as follows. A covariance matrix:

[K]ij = k(xi,xj), for all columns xi and xj in X, (4)

a covariance vector:

[k?]i = k(x?,xi), for all columns xi in X, (5)

and a scalar,
k?? = k(x?,x?) (6)

are calculated using the selected kernel function k(xp,xq).
Our choice of the covariance function is motivated by [28]

and [4], where the authors describe the squared exponential,
also referred to as the radial basis function or RBF, as a
common solution:

k(xp,xq) = σ2
fexp

(
−|xp − xq|

2

2l2

)
, (7)

where the length scale l, the amplitude σ2
f , and the noise level

σ2
n are so-called hyperparameters. The hyperparameters need

to be given appropriate values so the resulting regression best
matches the given dataset (X,y). As an alternative to RBF, the
authors in [8] and [6] consider the Matérn covariance function
family and argue for its advantages, including the controllable
smoothness of the model. To keep the evaluation results
compatible with our previous analysis in [3], we continue
to use RBF-based GPR modeling. Comparing kernels in the

context of AL is an interesting subject but it falls outside the
scope of the current analysis.

According to the Bayesian inference approach with marginal
likelihood, the following quantity, referred to as the log
marginal likelihood (LML),

log p(y | X, l, σ2
f , σ

2
n) = −

1

2

(
yTK−1

y y + log |Ky|
)
+C,

(8)
is minimized with respect to the selected hyperparameters:

(l, σ2
f , σ

2
n) = argmin

l,σ2
f ,σ

2
n

(log p(y | X, l, σ2
f , σ

2
n). (9)

After solving this optimization problem and fitting the hyperpa-
rameters, we can use the constructed GPR model to obtain the
mean µf(x) and the standard deviation σf(x) of the predictive
distribution for the response function f(x) at any point x̃, in
the input space, sampled in X or not.

When simulating cost- and memory-aware AL, we train two
GPR models, as described above. The cost model is trained on
(X, c) and the memory model is trained on (X,m), where c
and m are vectors of cost and memory responses, respectively.
In other words, vectors c and m substitute y in the GPR
formulation from above. Each model independently updates
its hyperparameters after every iteration. For any set of points
{x̃i} considered by AL, these models can characterize its i-th
candidate using the following values: µcosti and σcosti – mean
and standard deviation of cost predictions, as well as µmemi and
σmemi – mean and standard deviation of memory predictions.
As described in the following section, we implement five
algorithms which make distinct decisions based on vectors
µcost, σcost, µmem, and σmem in the process of identifying
x̂ ∈ {x̃i}, the point that will be used to update both models
at the next iteration.

IV. IMPLEMENTATION AND ANALYZED DATASETS

We perform our AL analysis in Python using the tools for
Machine Learning and data analysis from the package called
scikit-learn [29]. Specifically, we use the code for Gaussian
Processes [30] from version 0.18.1. Unlike earlier versions,
it provides a completely revised Gaussian Process module
and supports kernel engineering, among other features. To
analyze batches of AL simulations in parallel, we leverage the
process-based parallelism enabled by Python’s multiprocessing
module [31].

To drive the developed AL simulator, we partition the dataset,
which we describe later in this section, into three subsets:
Initial (for initial regression fitting), Active (for one-at-a-time
experiment selection with AL), and Test (for prediction quality
analysis). In each experiment with a dataset that contains n
samples, we randomly shuffle its samples and assign nTest =
200 samples to the Test partition. Using a tunable rinit ∈
(0, 1) parameter, we then vary the number of Initial samples,
defined as: nInit = int(rInit × (n − nTest)), and leave the
remaining samples for AL. In this manner, we experiment
with large (rInit = 0.3), moderate (rInit = 0.1), and minimal
(rInit = 0.004) Initial partitions. For a dataset with n = 612,
the absolute values nInit are 123, 41, and 1, respectively.

Algorithm 1 Active Learning Procedure

Input: Matrix X ∈ RnActive×d, cost response vector c ∈
RnActive , and memory response vector m ∈ RnActive

(nActive – number of samples in the the Active set, d –
number of features); GPRcost and GPRmem are GPR
models trained on the data from Initial set, (XInit, cInit)
and (XInit,mInit), respectively.

Output: XLearned, trained GPRcost and GPRmem models
1: XLearned[]← 0, cLearned[]← 0,mLearned[]← 0
2: for i = 0→ nActive−1 do . Iterate over all samples
3: µcost,σcost ← GPRcost.predict(X)
4: µmem,σmem ← GPRmem.predict(X)
5: idx← select candidate(X,µcost,σcost,µmem,σmem)

. Find the candidate using to the selected AL algorithm
6: XLearned[i]←X[idx, :]
7: cLearned[i]← c[idx], mLearned[i]←m[idx]
8: Remove idx-th row from X
9: Remove idx-th elements from c and m

10: GPRcost.fit([XLearned,XInit], [cLearned, cInit])
11: GPRmem.fit([XLearned,XInit], [mLearned,mInit])

. Retrain both models on the data that
includes samples from Initial set, all previously
selected samples, and the sample selected at the
current iteration; use old model’s parameters as a
starting point in hyperparameter fitting.

12: end for

The last case corresponds to the realistic practical scenario
where an application is first run on a new platform or in a new
configuration to verify the correctness and then the performance
characteristics are collected for the following runs.

After fitting the models on the Initial set, our simulator
repeats the following cycle: suggest a point for the next exper-
iment, obtain the desired measurements for that experiment,
and retrain the models with these measurements. This process
guides the sequential exploration of the input space in an
unpredictable yet efficient manner. The pseudocode for the
exploration routine that trains cost and memory models is
given in Algorithm 1. To select specific candidates, this routine
calls functions that implement algorithms that we introduce in
Section IV-B.

Our analysis framework runs in an “offline” mode, consulting
a database of precomputed performance samples. This enables
cross-validation and thus robust comparison of AL strategies
with modest computational cost. In contrast, an “online” AL
system makes decisions about what experiment to run next
before the experiment has been run. If the same deterministic
AL algorithm was run again, it would begin by repeating
performance samples using the same parameters and yet would
measure different performance (within machine variability)
and thus choose to sample different configurations. This is
wasteful and non-deterministic. Although we intend for our AL
methods to ultimately be used in an active context, the quality
and reliability of different algorithms is better analyzed offline.

We feed many shuffled copies of the dataset with precomputed
samples into the developed AL algorithms as input, run many
AL instances or trajectories, and draw conclusions in terms
of performance quantiles. Similarly, simulations in the state-
of-the-art study [7], which focuses on AL performance, run
“offline” and use lookup tables with experimental data.

The terms that refer to the entries in performance dataset
can be used interchangeably, but we intend to use them in
the following contexts. Jobs refer to individual computations
performed on a supercomputer; each job is run to obtain
information about a configuration corresponding to the selected
combination of feature values. After this information is
processed, these jobs or samples are added to the dataset,
which we later randomly partition. Among the samples in the
Active partition, AL selects one experiment or candidate at
each iteration and updates the underlying models.

A. Datasets

In order to study the efficiency of the proposed AL algo-
rithms, we ran a large collection of shock-bubble situations
with different parameters using the FORESTCLAW package.
We ran over 1K computational jobs on Edison [32], at NERSC
(US National Energy Research Computing Center). These jobs
were scheduled to run on Edison’s compute nodes (two-socket
12-core Intel “Ivy Bridge” processors running at 2.4 GHz
and interconnected with the Cray Aries network with the
Dragonfly topology running at 23.7 TB/s global bandwidth)
using SLURM [33], the supercomputer’s workload manager
and scheduler. After completion, we collected all relevant
information, including FORESTCLAW output, error logs, and
scheduler accounting information, and transferred it from the
supercomputer to a local workstation in order to analyze it
using the developed simulator for AL evaluation.

In the processing phase, we realized that memory usage data
was only available for 612 jobs. For the rest of them, SLURM
reported zeros in the field called MaxRSS – the maximum
memory resident set size for all job tasks. What appears to be
a bug in the usage reporting system1, only affected some of the
least expensive jobs. Indeed, the longest job with MaxRSS = 0
ran for 139 seconds (the global maximum is over an hour), and
the smallest non-zero MaxRSS reported by SLURM is around
16KB. Therefore, we believe that the most interesting aspects
of AL, which manifest themselves when the most expensive
experiments are selected and studied, can be analyzed using the
reduced 612-sample dataset. In this set, the computational cost,
expressed in node-hours, of the most expensive experiment
exceeds the cost of the least expensive experiment by the factor
of 5.9× 103.

Table I provides details of the analyzed dataset. The intervals
in which the responses and features change are relatively
large, allowing us to explore the behavior of the application
performance across a domain where the growth along some of
the dimensions is significant. These 612 simulations represent
a subset of the total 1920 possible combinations of all sampled

1This incident was reported to NERSC system administrators.

values of 5 features. Of these simulations, 532 jobs represent
unique parameter combinations, whereas the remaining 80 jobs
provide 2nd and in some cases 3rd repetitive measurements,
capturing the machine performance variability. Therefore, 532
combinations studied make up to 28% of the total 1920
combinations, a fraction we expect to provide sufficient data
to adequately model and predict the responses within the
parameter domain of interest. To collect this dataset, we used
over 30K core-hours from our computing allocation at NERSC.

The job cost is calculated as a product of wall-clock time
and the number of processors used, and the MaxRSS values
characterize the peak memory per process consumption. Before
partitioning the dataset, we pre-process it by applying log10
transformation to the cost and memory responses. Our analysis
confirms that the discrepancy in the prediction quality for
the extremes, the smallest and the largest response values, is
reduced after we apply this transformation. It also eliminates
the risk of obtaining nonsensical negative predictions that
GPR occasionally produces for near-zero runtimes in the non-
log space. In our evaluation, we fit GPR models for log-
transformed cost and memory responses and analyze the means
of predictive distributions µcost and µmem, respectively. Using
exponentiation, we obtain non-log predictions that are always
positive and compare them with actual measurements in the
dataset in our error analysis. Following common practice, we
also scale all performance features to the unit cube [0, 1]d,
where d = 5 is the input space dimension.

B. Candidate Selection Algorithms

Aiming to explore a diverse set of AL schemes, we developed
five algorithms that guide AL as follows.

• RandUniform: uniform random sampling. This scheme
does not consider the model output for predicted responses.
It is not useful in sequential AL, as this sampling can be
performed in batches more efficiently, without the need
to incrementally fit the model. In our evaluation, it serves
as a reference point in the algorithm comparison.

• MaxSigma: at each iteration, this algorithm selects an
experiment with the largest uncertainty characterized by
the vector σcost produced by the current GPR model
for the costs of remaining samples. In [3], we called this
algorithm Variance Reduction, whereas the comprehensive
survey of AL in classification problems [5] refers to this
querying strategy as Uncertainty Sampling with candidate
selection based on the least confident predictions.

• MinPred: With the candidate selection defined as:

x∗ = argmax
i

(σcosti − µcosti) ,

we aim to implement the greedy cost efficient algorithm,
which is equivalent to the scheme that finds the maximum
of the element-wise ratio σcost/µcost in the non-log
space. We expect to select the candidates with the largest
prediction uncertainty per unit of cost. However, our
analysis shows that this selection algorithm degrades to
the state where its decisions are influenced primarily by
µcost due to the difference in scales of values in µcost

TABLE I: Parameters of the AMR shock-bubble simulation dataset with 612 samples.

min median mean max

Feature: p, # of nodes 4 8 12.740 32
Feature: mx, box size 8 16 20.520 32
Feature: max level, max refinement level 3 5 4.720 6
Feature: r0, bubble size 0.200 0.300 0.340 0.500
Feature: rhoin, bubble density 0.020 0.100 0.160 0.500

Response: wall clock time, seconds 1.970 94.840 239.150 4262.730
Response: cost, node-hours 0.002 0.248 0.800 11.850
Response: memory, MB 0.020 7.980 7.500 32.560

and σcost . We notice that the variations in the former
are typically hundreds to times larger than the variations
in the latter. Therefore, we give this policy the name
MinPred, as it indeed selected the candidates with the
smallest predicted costs µcosti in all relevant cases that
we investigates. We address this strong skewness in the
following algorithm.

• RandGoodness: In contrast to the greedy deterministic
selection in MinPred, we propose a randomized algorithm
that samples candidates with the candidate “goodness”
measured as: gcost = 10σcost−µcost . Base 10 is the most
intuitive option here since we apply the logarithm base
10 to our datasets in the pre-processing step; higher
bases will lead to more skewed candidate distributions.
After normalizing its components so they add up to 1.0,
we can use gcost as a discrete probability distribution
for randomized candidate selection. This sampling is
designed to choose candidates near those selected by
MinPred in most cases and occasionally select more
expensive candidates, as gauged by model predictions.
It adds exploration ability in the candidate selection that
otherwise purely exploits regions of the input space with
the least expensive samples. We expect RandGoodness to
acquire samples outside of those regions and improve its
predictions throughout the entire input space.

• RandGoodness with Memory Awareness (RGMA):
This algorithm is a memory-aware extension of Rand-
Goodness with a candidate filtering step. Given a specific
memory limit, this algorithm leaves out the candidates
for which memory predictions µmem exceed this limit,
marking them as undesirable. The rest of the candidates
are considered safe and used in random drawing with gcost
distribution. Additional assumptions and implementation
details are described in Section V-C.

Our implementations of these algorithms take the form of
individual functions that can be called from Algorithm 1 for
candidate selection. For the batch mode in our evaluation, we
use an outer loop that runs the AL routine with each selection
algorithm on the specified number of random partitions of the
analyzed dataset. Each AL instance or trajectory captures the
error and cost characteristic of the process that learns the data
made available to it in the randomly selected Active partition.
By processing a large of number of trajectories, we can reason

about the statistical properties of the algorithms independent
of the initial conditions related to specific partition properties.

V. EVALUATION

In our experimental evaluation, we gain valuable insight into
the following aspects of the AL-based experimentation and the
proposed algorithms. First, we study the impact of AL decisions
on the cost distribution of selected samples. Second, we define
necessary evaluation metrics for comprehensive analysis of
trade-offs. We also describe the assumptions we use in our
simulation-based analysis of memory awareness with RGMA.
Third, using such metrics as cumulative regret, cumulative
cost, and an aggregate error measure, we present our findings
about algorithm optimality and characterize how sensitive the
algorithms are with respect to the amount of data used in the
pre-AL model fitting. At the end of this section, we discuss
additional optimizations and describe the audience that will
likely find much practical value in our work.

A. Cost Distribution Analysis

We begin our evaluation with a set of experiments that aims
to characterize the algorithms from the cost perspective and
run instances of AL with all algorithms except for RGMA
(memory-specific trade-offs are discussed later in this section).
The goal of this analysis is to confirm our intuitions about
the aforementioned skewness and exploratory abilities that are
present in these algorithms.

Fig. 2 presents a high-level view of the candidate selection
algorithms being evaluated. The violin-shaped filled areas
depict the distributions of the samples selected in the first
150 AL iterations (roughly half of all samples in Active
partitions) in a single trajectory for each algorithm. The violin
width represents the relative frequency of the corresponding
y-axis cost values (actual, not predicted), the thick vertical
lines depict interquartile ranges (IQRs), and white dots show
the median values. RandUniform and MaxSigma demonstrate
similar cost distributions with no bias, therefore this high-
level view provides no basis for choosing one algorithm over
the other. In contrast, we can see that both RandGoodness
and MinPred tend to select inexpensive experiments. At the
same time, we confirm that RandUniform is able to select
more expensive experiments than MinPred and find its long-
tailed cost distribution the most preferable. In order to capture

Fig. 2: Cost of samples selected by AL algorithms.

RandUniform MaxSigma MinPred RandGoodness

Candidate Selection in Active Learning

4
3
2
1
0
1
2

lo
g
(T

ru
e
 C

o
st

)

specific trade-offs between these algorithms, we define cost-
and memory-specific evaluation metrics, as described below.

B. Evaluation Metrics and Simulated Memory Awareness

We define the following metrics and record their values after
every AL iteration:

• RMSE: Following common practice, we estimate the
aggregate error as root-mean-square error:

RMSE =
1

√
nTest

‖e‖ =
√

1

nTest
eTe, (10)

where ecost = µTestcost − cTest and emem = µTestmem −
mTest can be used as vector e in the cost and memory
error analysis, respectively. These calculations use non-
log predictions (i.e. model output converted using expo-
nentiation) and unmodified responses from the dataset.
Superscript Test denotes that predictions are obtained for
samples in the Test partition, for which the corresponding
cost and memory responses constitute cTest and mTest –
the portion of the dataset used exclusively for error
estimation, not for model training.

• Cumulative Cost: Not only are we interested in the
reduction of RMSE, but we also want to quantify how
quickly this reduction happens with respect to the growth
of the sample cumulative cost in every AL trajectory. This
metric is the sum of the costs of all samples x̂i selected
before the current iteration: CC =

∑
i ci.

• Cumulative Regret: This metric estimates the sum of all
opportunity costs incurred when AL selections correspond
to the jobs that exceed the maximum allowed memory
usage Lmem. Formally defined as:

IRi =

{
ci, if mi ≥ Lmem,
0, otherwise,

CR =
∑
i

IRi, (11)

CR is the total sum of the worst-case individual regrets
IRi incurred when such jobs run almost to completion
but exceed the memory limit at the very end and crash.
If AL algorithms had selected alternative candidates in
such cases, the amount of computing cycles measured
by ci could have been used towards more productive
jobs, resulting in no failures and providing useful data.
With respect to a given memory limit Lmem, we can
classify all candidates as satisfying (µmem < Lmem) and
exceeding (µmem ≥ Lmem) based on memory predictions.
RGMA, unlike the rest of the algorithms, implements this

classification and attempts to reduce CR by selecting only
satisfying samples.

While running our pre-selected set of AMR simulations
on Edison, we did not come close to using all available node
memory. In fact, we made sure that the simulations we selected
were guaranteed to complete and provide useful data. Therefore,
we assume that Lmem arise from a hypothetical yet realistic
experimentation workflow we choose to simulate and analyze:

• A relatively small set of simulations from the Initial
partition is first run in an environment that can satisfy
high memory demands. Experimenter’s intuition rather
than AL is used to select these simulations.

• After switching to an environment with less memory per
node, an experimenter relies on AL in running additional
simulations and refining the underlying models. In practice,
this transition can be motivated by the difference in the
costs and allocation limits.

The memory limit is not enforced in the first phase, but
Lmem is set to the reduced memory amount in the second phase.
Our motivation for analyzing this particular workflow comes
from the following observations. First, many HPC systems
have multiple queues, including queues with high-memory
machines (often called bigmem) and regular queues. Switching
between queues only requires a minimal change in the batch
script for an individual simulation. Second, the knowledge
obtained from initial experiments can be extremely valuable
in mapping the regions where memory usage approaches and
exceeds specific memory limits. The larger the set of Initial
simulations contributing to this knowledge, the lower the CR
values we expect to observe in AL guiding the experimentation
in the second phase. Third, with the aforementioned tunable
rInit parameter in our evaluation, we can control the size of
Initial partition. As this partition grows, we expect to observe
the reduction of CR in RGMA selections. If Initial partition is
small or does not include high memory simulations, AL has no
option other than to learn from its own “mistakes”. Thus, in the
trial-and-error fashion, it should give high values to the selected
configurations that exceed the limit Lmem, and learn over time
to avoid approaching this limit too closely. Later in this section,
we describe our simulations that investigate AL scenarios with
large (nInit = 123), moderate (nInit = 41), and minimal
(nInit = 1) Initial partitions. In the last case, there is almost
no knowledge of high-memory experiments coming from the
first phase. We can view it as a simplified and more common
experimentation scenario where the initial model fitting and
AL run on the same system and face the same memory limit.
By comparing these three cases we analyze how sensitive the
RGMA’s memory awareness is with respect to the amount of
prior information about the undesirable configurations.

In our simulations, we use Lmem = 13.67 MB (95% of the
largest log-transformed memory value, or, equivalently, 42%
of the largest unmodified memory response in the dataset).
Considering the long-tailed distribution for the analyzed mem-
ory responses, this limit splits the dataset into 551 satisfying
samples and 61 exceeding samples. As shown in Algorithm 2,

Algorithm 2 RGMA with Cost and Memory Awareness

Input: Matrix X with considered candidates and four vectors:
means µcost and the standard deviations σcost of cost
predictions, and means µmem and the standard deviations
σmem of memory predictions for all candidates in X .
Lmem – maximum allowed memory usage.

Output: Index of the recommended candidate
1: filter ← µmem < Lmem . Vector of True and False
2: all← range(0, len(X)), satisfying ← all[filter]
3: gcost ← 10σcost[filter]−µcost[filter]

4: gcost ← gcost/
∑
gcost . Normal cost-based “goodness”

5: idx ← draw value from vector satisfying using the
discrete probability distribution defined by gcost

RGMA accepts Lmem as input and tries to predict whether the
candidates are likely to satisfy or exceed this limit based on
µmem predictions. The exceeding candidates are then excluded
from the randomized candidate drawing. It is worth mentioning
that this implementation becomes equivalent to RandGoodness
if vector filter contains only True values.

C. Analysis of Algorithm Trade-offs

As outlined earlier, our dataset partitions play distinct roles:
initial model fitting, AL, and error evaluation. To match the
simulated experimentation workflow, we partition shuffled
copies of the dataset such that both Initial and Active partitions
include samples with memory usage greater than Lmem,
whereas the Test partition only contains values below Lmem,
providing error estimates based on allowed configurations. This
point is demonstrated in Fig. 3. With no particular order within
partitions, available samples are shown as vertical lines that
indicate their memory usage. With this structure in mind, we
formulate the aforementioned sensitivity analysis as follows:
after modeling a varying amount of data in the Initial partition,
can AL efficiently sample data in Active partition while
avoiding a moderate set of undesirable, exceeding samples?

To understand this sensitivity, we run evaluation experiments
and show how CR grows under different AL algorithms in
Fig. 4a. We run each algorithm with nInit = 41 and for
RGMA also include experiments that use Initial partitions of
different sizes. Each variant runs on 32 shuffled copies of the
dataset, partitioned as described above. All RGMA instances
flatten out: CR does not increase significantly after AL selects
enough samples. RGMA with nInit = 123 flattens out at
the lowest value as it extracts the most knowledge from the
large Initial partition. We do not show RandGoodness on the
plot since it behaves similar to MinPred and does not flatten
out. For MaxSigma and RandUniform, our analysis shows
that CR grows proportionally to CC. RandUniform’s CR
increases almost linearly, whereas MaxSigma’s CR plateaus
only because there are no expensive samples left in the Active
partition after about 100 iterations. Below, we focus on RGMA
and evaluate the knowledge obtained using the Initial partition
from the cost-error perspective.

Fig. 3: Distribution of samples across partitions. Red vertical
lines depict samples which exceed the memory limit Lmem,
shown with the horizontal line, and should be avoided in AL.

6.0

6.5

7.0

7.5

lo
g
(m
em

or
y)

Init Active Test

In the same set of evaluations, we analyze the relationship
between RMSEcost and CC. The trade-off curves that plot
the former as a function of the latter are shown in Fig. 4b.
These curves provide a more practical view on the algorithm
performance than these metrics plotted individually as functions
of the iteration count. Indeed, an experimenter can select the
algorithm that provides the most accurate cost model for a range
of computing budgets dedicated to the desired experimentation.
For fair cost comparison, each shown CC value includes the
cost of all Initial samples since those samples are also used in
the model fitting. The figure shows that increasing the size of
the Initial partition moves the cost-error curve away from the
lowest, optimal curve defined by RGMA with nInit = 1.

By combining both the regret and the error perspectives,
we arrive at the following conclusions. RGMA demonstrates
that the underlying GPR-based memory model can be used to
avoid experiments that violate memory constraints. RGMA’s
plateauing cumulative regret makes this algorithm an attractive
candidate for practical AL-guided experimentation. Regarding
its tuning, we find that increasing the number nInit of
pre-AL experiments might be beneficial as it lowers the
amount of compute cycles spent on mistakenly selected failing
experiments. However, in the studied case with costly AMR
computations, the initial training should be minimal to allow AL
select all experiments in a cost-efficient manner. Considering
that RMSE is a strong metric that averages nTest = 200
predictions in our case, even a small advantage provided by
RGMA with nInit = 1 over the second-best case with moderate
nInit = 41 Initial partition is significant.

D. Discussion

Below we summarize three directions that have potential to
further improve the proposed AL and the underlying modeling.

First, we can tune the modeling to best fit features with
specific growth patterns. It is common to view performance
characteristics as functions of the number of processors used p
which is selected among values such as 22, 23, 24, and so on,
especially in the analysis that focuses on application scalability.
If we adjust our pre-processing, we can train GPR models
using this exponent as a feature such that, for instance, the
point with 23 processors is spaced equally from 22 as it is from

0 50 100 150 200 250 300 350

Iteration

0

50

100

150

200

250
C

R
,
n
o
d
e
-h

o
u
rs

RGMA, nInit=1
RGMA, nInit=41

RGMA, nInit=123

RandUniform

MaxSigma

MinPred

(a) Growth of Cumulative Regret

0 50 100 150 200 250 300 350

Cumulative Cost, node-hours

0.10

0.15

0.20

0.25

R
M

S
E
 f

o
r

C
o
st

RGMA, nInit=1

RGMA, nInit=41

RGMA, nInit=123

(b) RMSE for cost predictions as a function of Cumulative Cost

Fig. 4: Trade-off analysis that uses three evaluation metrics: Cumulative Regret, Cumulative Cost, and RMSE. The plots depict
IQRs (25th and 75th percentiles) as boundaries of the filled areas and the median values as bold lines inside IQRs.

24. This adjustment may provide advantages in the analysis
where feature values span many orders of magnitude.

Second, finding optimal stopping conditions in AL is a non-
trivial task. As demonstrated in Fig. 4a, our RGMA trajectories
already stop before the rest of the algorithms. We added an
early termination case into our RGMA implementation that
is triggered only when all remaining samples are likely to
exceed the memory limit. We also noticed that this is not
a sufficient condition since in some cases CR demonstrated
growth beyond the plateau values in the very last iterations
before stopping, i.e. when the candidates are scarce. We may
overcome this issue by employing the approach from [34] based
on the idea of using stabilizing predictions as a heuristic for
stopping AL. In practice, multiple factors, including stabilizing
predictions, stabilizing hyperparameters, and the reduction of
prediction uncertainty for both cost and memory metrics, should
be considered in applications of AL to computer simulations.

Third, we can rewrite our error metric in (10) as:

RMSE =
√
eTTestρeTest, (12)

where ρ is the diagonal matrix 1/nTestI . With this uniform
weighting of samples, our error metric weights all samples
equally. This is reasonable in the present context, but when
parametrizing a sample space it is common for the number of
expensive candidate samples to be much larger than the number
of inexpensive samples, effectively leading to prioritization of
accuracy for these large samples. This is especially likely
when working with a high-dimensional parameter space or
linearly spaced parameters. Indeed, our study would have
suffered from this bias if we had not pre-selected our jobs to
limit the total cost by more sparsely sampling the expensive
parameter regimes. Rather than pruning the parameter space
to correct for this bias, it can be more convenient to use a
non-uniform diagonal weighting ρ which would allow the
user to specify the relative priority of different regions of the
parameter space. While the performance modeling in [35]
calls for a scale-independent error metric, we argue that
scale-dependent error metrics are superior in the cost-efficient
AL: from the experiment’s perspective, prediction errors for
inexpensive experiments are more tolerable than the same errors
in predictions for expensive experiments.

Our final remark relates to the potential of broader impact
of AL in the AMR community. There appears to be a large
gap between the developers of AMR codes and expert users on
one side and non-expert users and interested practitioners on
the other. The former group already uses back-of-the-envelope
heuristics to manage their simulations, whereas the latter group
may not have such insights and can benefit from supporting
methodologies and tools. We hope that the algorithms and the
analysis discussed in this paper will prove useful to the latter
group and promote Active Learning techniques, including the
cost- and memory-aware algorithms, as reliable and efficient.

VI. CONCLUSIONS AND FUTURE WORK

We demonstrate how Active Learning combined with Gaus-
sian Process Regressions can be used to optimize sequences of
parallel computer experiments, specifically for Adaptive Mesh
Refinement simulations. We describe how Active Learning
techniques help incrementally model and predict performance
characteristics such as the computational cost and memory
usage. We present our experience with applying five different
algorithms that guide experimentation in a 5-dimensional
input space of machine-specific, numerical, and physical
parameters. Our key contribution relates to the development
and experimental evaluation of an algorithm that provides
cost-efficient and memory-aware exploration of this space.
We confirm that the algorithm learns from its mistakes and
improves its ability to avoid simulations that violate memory
constraints as the learning process evolves. Researchers and
practitioners who use Adaptive Mesh Refinement are likely
to benefit from employing this algorithm to guide efficient
sampling when they run series of simulations in such types
of analysis as parameter sweeps, optimization, and uncertainty
quantification. While our work is developed in the Adaptive
Mesh Refinement context, the key ideas can be applied to other
types of computing experiments, especially in environments
with severe cost and memory constraints. In applications that
are more conducive to exploration, Active Learning may help
efficiently sample input spaces with many dimensions and
construct useful probabilistic surrogate models.

In our future work, we consider evaluating alternative kernel
functions (e.g., anisotropic RBF kernels and Matérn kernels
with controllable smoothness) and regressions for non-Gaussian

distributions. These model improvements are likely to provide
significant advantages with broad applicability. With regard
to the candidate selection in Active Learning, we would like
to better understand the trade-offs associated with running
multiple simulations in parallel at each iteration of Active
Learning. Such schemes increase the scheduling overhead and
result in less greedy and optimal selection strategies, but the
achieved reduction of the time required to train accurate models
may be advantageous in many applications. Finally, we may
train multiple local performance models simultaneously and
evaluate this extension of the current modeling approach in
the context of Adaptive Mesh Refinement simulations.

REFERENCES

[1] M. P. Forum, “MPI: A Message-Passing Interface Standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[2] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[3] D. Duplyakin, J. Brown, and R. Ricci, “Active learning in performance
analysis,” in Proceedings of the IEEE Cluster Conference, Sep. 2016.
[Online]. Available: http://www.flux.utah.edu/paper/duplyakin-cluster16

[4] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[5] B. Settles, “Active learning literature survey,” Computer Sciences
Technical Report, vol. 1648, 2009.

[6] T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis
of computer experiments. Springer Science & Business Media, 2013.

[7] P. Balaprakash, R. B. Gramacy, and S. M. Wild, “Active-learning-
based surrogate models for empirical performance tuning,” in Cluster
Computing (CLUSTER), 2013 IEEE International Conference on. IEEE,
2013, pp. 1–8.

[8] R. B. Gramacy and H. K. Lee, “Adaptive design of supercomputer
experiments,” Technical report, Dept of Applied Math & Statistics, 2006.

[9] A. Matsunaga and J. A. Fortes, “On the use of machine learning to
predict the time and resources consumed by applications,” in Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing. IEEE Computer Society, 2010, pp. 495–504.

[10] E. R. Rodrigues, R. L. Cunha, M. A. Netto, and M. Spriggs, “Helping
HPC users specify job memory requirements via machine learning,” in
Proceedings of the Third International Workshop on HPC User Support
Tools. IEEE Press, 2016, pp. 6–13.

[11] A. Dubey, A. Almgren, J. B. Bell, M. Berzins, S. Brandt, G. Bryan,
P. Colella, D. Graves, M. Lijewski, F. Läffler, B. OâShea, E. Schnetter,
B. V. Straalen, and K. Weide, “A survey of high level frameworks in
block-structured adaptive mesh refinement packages,” Journal of Parallel
and Distributed Computing, no. 0, pp. –, 2014.

[12] B. V. Straalen, J. Shalf, T. Ligocki, N. Keen, and W.-S. Yang, “Scalability
Challenges for Massively Parallel AMR Applications,” in IPDPS ’09
Proceedings of the 2009 IEEE International Symposium on Parallel and
Distributed Processing. IEEE Computer Society Washington, DC, 2009,
pp. 1–12.

[13] L. Ivan, H. De Sterck, S. A. Northrup, and C. P. T. Groth, “Multi-
dimensional finite-volume scheme for hyperbolic conservation laws
on three-dimensional solution-adaptive cubed-sphere grids,” J. Comput.
Phys., vol. 255, no. 0, pp. 205–227, 12 2013.

[14] A. Langer, J. Lifflander, P. Miller, K. C. Pan, L. V. Kalé, and P. Ricker,
“Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement,”
in Computer Architecture and High Performance Computing (SBAC-PAD),
2012 IEEE 24th International Symposium on, Oct 2012, pp. 100–107.

[15] D. Calhoun, “Adaptive mesh refinement
resources,” http://math.boisestate.edu/ cal-
houn/www personal/research/amr software/, accessed: 2016-10-18.

[16] C. Burstedde, D. Calhoun, K. Mandli, and A. R. Terrel, “ForestClaw:
Hybrid forest-of-octrees AMR for hyperbolic conservation laws,” arXiv
preprint arXiv:1308.1472, 2013.

[17] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees,” SIAM Journal
on Scientific Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[18] D. Calhoun and C. Burstedde, “ForestClaw : A parallel algorithm
for patch-based adaptive mesh refinement on a forest of quadtrees,”
arXiv:1703.03116, 2017.

[19] K. T. Mandli, A. J. Ahmadia, M. Berger, D. Calhoun, D. L. George,
Y. Hadjimichael, D. I. Ketcheson, G. I. Lemoine, and R. J. LeVeque,
“Clawpack: building an open source ecosystem for solving hyperbolic
pdes,” PeerJ Computer Science, vol. 2, p. e68, 2016.

[20] A. C. Calder, B. C. Curtis, L. Dursi, B. Fryxell, P. MacNeice, K. Olson,
P. Ricker, R. Rosner, F. Timmes, H. Tufo et al., “High performance
reactive fluid flow simulations using adaptive mesh refinement on
thousands of processors,” in Proceedings of the 2000 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2000, p. 56.

[21] C. Burstedde and J. Holke, “Coarse mesh partitioning for tree based
amr,” arXiv preprint arXiv:1611.02929, 2016.

[22] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Model learning with local
gaussian process regression,” Advanced Robotics, vol. 23, no. 15, pp.
2015–2034, 2009.

[23] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using pseudo-
inputs,” in Advances in neural information processing systems, 2006, pp.
1257–1264.

[24] J. Quiñnonero-Candela, C. E. Rasmussen, A. R. Figueiras-Vidal et al.,
“Sparse spectrum gaussian process regression,” Journal of Machine
Learning Research, vol. 11, no. Jun, pp. 1865–1881, 2010.

[25] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[26] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” arXiv preprint arXiv:1403.5607, 2014.

[27] J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith,
and M. West, “Optimization under unknown constraints,” Bayesian
Statistics 9, vol. 9, p. 229, 2011.

[28] E. Pasolli and F. Melgani, “Gaussian process regression within an
active learning scheme,” in Geoscience and Remote Sensing Symposium
(IGARSS), 2011 IEEE International, July 2011, pp. 3574–3577.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[30] “scikit-learn-0.18.dev0 - Gaussian Processes,” http://scikit-
learn.org/dev/modules/gaussian process.html, accessed: 2017-04-18.

[31] “Multiprocessing – process-based threading interface,”
https://docs.python.org/2/library/multiprocessing.html, accessed:
2017-10-21.

[32] NERSC. Edison. http://www.nersc.gov/users/computational-systems/
edison/. Accessed: 2017-04-18.

[33] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 2003, pp. 44–60.

[34] M. Bloodgood and J. Grothendieck, “Analysis of stopping active learning
based on stabilizing predictions,” arXiv preprint arXiv:1504.06329, 2015.

[35] P. Reisert, A. Calotoiu, S. Shudler, and F. Wolf, “Following the blind seer–
creating better performance models using less information,” in European
Conference on Parallel Processing. Springer, 2017, pp. 106–118.

http://www.flux.utah.edu/paper/duplyakin-cluster16
http://www.nersc.gov/users/computational-systems/edison/
http://www.nersc.gov/users/computational-systems/edison/

	Introduction
	Background and Related Work
	Adaptive Mesh Refinement
	Gaussian Processes
	Bayesian Optimization and Active Learning

	Modeling and Active Learning
	Implementation and Analyzed Datasets
	Datasets
	Candidate Selection Algorithms

	Evaluation
	Cost Distribution Analysis
	Evaluation Metrics and Simulated Memory Awareness
	Analysis of Algorithm Trade-offs
	Discussion

	Conclusions and Future Work
	References

