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Abstract. Biological fluid dynamics typically involves geometrically complicated
structures which are often deforming in time. We give a brief overview of some ap
proaches based on using fixed Cartesian grids instead of attempting to use a grid which
conforms to the boundary. Both finite-difference and finite-volume methods are dis
cussed , as well as a combined approach which has recently been used for computing
incompressible flow using the streamfunction-vorticity formul ation of the incompress
ible Navier-Stokes equations.
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1. Introduction. Biological fluid dynamics typically involves geo
metrically complicated structures which are often deforming in time . Solv
ing fluid dynamics equations in such geometries can be extremely chal
lenging, and methods based on body-fitted grids which conform to the
geometry can be difficult to implement. We give a brief overview of some
approaches based on using fixed Cartesian grids instead of forcing the grid
to conform to the boundary. Peskin's immersed boundary method outlined
in Section 4 is the best-known example of this class in the field of bio
logical fluid dynamics and has been successfully used by many researchers.
The immersed interface method discussed in Section 5 is a related approach
which can often achieve better accuracy near the boundary. These are both
finite-difference methods.

For advection-diffusion equations, finite-volume methods may be bet
ter suited, as described in Section 6. These allow exact conservation on
grid cells to be maintained and flux boundary conditions to be easily im
posed . High-resolution "shock-capturing" methods developed for conser
vation laws are also quite useful for problems with discontinuities or steep
gradients in the solution.

In Section 7 we describe a hybrid approach for computing incom
pressible flow using the streamfunction-vorticity formulation of the Navier
Stokes equations. Vorticity is advected and diffused on a finite-volume
grid, with flux at solid wall boundaries as required to satisfy the no-slip
boundary conditions. The streamfunction is computed from the vorticity
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on a finite-difference grid and then differenced to obtain velocities needed
in the finite-volume method.

2. Finite-difference and finite-volume methods. We will discuss
both finite-difference and finite-volume approaches, and first review the
essent ial ideas of each approach.

A finite-difference discretization of a differential equation is based on
replacing derivatives by differences of values defined on a discrete set of
grid points. The approximate solution generated consists of values Uri (in
two dimensions) representing pointwise approximations to the solution at
grid points (X i, Yj) at time t « ,

(2.1)

A finite-volume method, on the other hand, is based on approximating
cell averages of the solution over grid cells,

(2.2)
1 rY;+ 1/ 2 rX i +1 / 2

Uri ~ ~x~ J" IT. u(x, Y, tn ) dx dy.
y Y;-1 /2 Xi - l/ 2

For differential equations which arise from conservation laws and fluxes
(including advection-diffusion equations and most equations in fluid dy
namics), this is a very natural approach. The differential equation often
arises from a more fundamental integral form stating that the integral of
u over any finite volume changes with time only due to the fluxes across
the boundary of the volume. If the volume is a single grid cell, then this
leads to an updating formula for the cell average based on numerical flux
formulas. This has some advantages over more familiar finit e-difference
formulations. For probl ems where some quantity should be conserved it
is often easy to guarantee exact conservation numerically, This is particu
larly important in nonlinear wave-propagation problems with shock waves,
where the conservation form must be respected in order to obtain correct
solutions (see [43], for example). It can also be important in other prob
lems, such as when we wish to exactly conserve the total mass of some
chemical advecting in a flow. Another advantage of finite-volume methods
is that physical boundary conditions are often given in terms of fluxes at
the boundary. These are often more naturally discretized in the context of
finite-volume methods than with finite differences.

In some contexts, however , finite-difference methods are more natural
and may be easier to use. We have used a mixture of the two approaches in
developing Cartesian grid methods, using each where it is most appropriate.
(Another standard approach for partial differential equations is the finite
element method, based on variational principles. We don 't discuss this
class of methods here.)

3. Cartesian grids. Figure 1 shows a comparison of body-fitted grids
with Cartesian grids , in both the finite-difference and finite-volume frame-
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works. The top row shows body-fitted grids near a curved wall. A finite
difference method might update the values at one grid point based on values
at the 4 nearest neighbors , as indicated by the 5-point stencil shown. A
finite-volume method, on the other hand, would update the cell average of
u(x, y, t) over the shaded grid cell based on fluxes through the four edges
indicated. If the fluxes are based on values in this cell and the four neigh
boring cells, then again a 5-point stencil is obtained.

Finite-difference
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Finite-volume
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FIG . 1. Compariso n of different types of grids for boundaries or in terfaces .
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The middle row of Figure 1 shows a Cartesian grid at the same bound
ary. With a finite-difference method one might develop a modified 5-point
method based on the unequal distances from the grid point shown to the
points which lie on the wall. With the finite-volume approach one instead
has an irregular-shaped grid cell which requires computing a flux at the
edge corresponding to the physical boundary as well as at the sides ad
jacent to other cells. Note that the finite-volume method requires a flux
at the wall (Neumann boundary conditions) whereas the finite-difference
method requires a pointwise value at the wall (Dirichlet boundary con
dition), although with additional work either boundary condition can be
imposed on either grid .

The bottom row of Figure 1 shows a different situation in which there
is an interface immersed in the domain rather than a wall. This interface
might be a membrane immersed in the fluid or an interface between two dif
ferent fluids, for example. In this case we typically have partial differential
equations which must hold on each side of the interface, though perhaps
with discontinuous coefficients across the interface, or with an additional
source term appearing only at the interface . This generally leads to nons
moothness in the solution at the interface . With a finite-difference method
we might attempt to use a 5-point stencil with equally-spaced points on
both sides of the interface as indicated in Figure 1(e). This can be suc
cessful as long as the nonsmoothness is properly accounted for. With a
finite-volume method one might view grid cells as being confined to one
side or the other of the interface, as indicated in Figure l(f), with special
formulas for the flux across the interface, or one could view the uniform
Cartesian cells as spanning the interface, with appropriate source terms
incorporated in addition to the fluxes.

4. Embedded bodies and the immersed boundary method.
For problems with boundaries which cut through the grid, rather than using
grids of the type shown in Figure 1(c) or (d) an alternative is to embed the
physical domain into a larger computational domain and view the physical
boundary as an interface of the type shown in Figure l(e) or (f). Grid
points or cells are introduced which lie outside the physical domain. If the
equations can be extended in a suitable way, it may be simpler to solve
the extended equations on a purely Cartesian grid. A variety of methods
of this type have been introduced, such as fictitious domain methods (e.g.,
[34, 35]) and Mayo's method for elliptic equations [51, 52].

The immersed boundary method is a numerical method of this type
developed primarily by Peskin and his co-workers for solving the incom
pressible Navier-Stokes equations in complicated time-varying geometries.
The original application, which is still being studied with this method, was
to model a beating heart in order to study the motion of both natural and
artificial heart valves [54-58]. Since then it has been used for many other
applications, including aquatic locomotion [24], blood platelet aggregation
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[27-29] , and wave motion in the cochlea [6, 7] . Similar approaches have
also been used outside of biophysics, e.g., to sedimentation [65] and bubble
dynamics [69, 70].

For a problem such as heart modeling, the geometry is not only ex
tremely complex but is also time-varying as the heart goes through its
pumping cycle and the valves open and close. Attempting to use a grid
that conforms to the physical boundary would be extremely difficult. Pe
skin's idea was to instead view the entire heart as being immersed in a
Cartesian box of fluid (a square in the original 2D model or a cube in the
current 3D model). The incompressible Navier-Stokes equations are solved
on a uniform Cartesian grid in this box and the outer heart wall (as well as
interior walls separating chambers , valve leaflets, etc.) are viewed as being
immersed within the fluid. These structures are modeled by a separate La
grangian set of grid points that move with the local fluid velocity in order
to impose the requirement that no fluid can flow through the wall.

In each time step , the Navier-Stokes equations are solved on the uni
form grid to determine the fluid velocities at each of these grid points.
These velocities are then interpolated to the immersed boundary points to
determine its motion . Of course the boundary must also have an effect
on the fluid, and this is modeled by adding a forcing term to the Navier
Stokes equations to represent the force exerted on the fluid by the immersed
boundary. This is a singular (delta function) force with support only along
the boundary. The strength of this force depends on the nature and posi
tion of the boundary. For example, an elastic material which is stretched
exerts a restoring force that can be determined from the configuration of
the boundary. The heart wall also exerts force due to muscle contraction
that can be determined based on position and phase of the heart cycle.

The incompressible Navier-Stokes equations then take the form

(4.1)

where

(4.2)

a, + (u · V')u + V'p = lJ~U + f
V"u=O

f(x, t) =i F(s, t)<5(x - X(s , t)) ds.

Here x= (x, y) is the spatial variable in 2D, r is the immersed boundary
consisting of points X( s, t) parameterized by s at time t, <5 is the 2D delta
function and F(s, t) is the force density at X(s ,t) . These equations are
coupled with the equations for the motion of r,

(4.3) a - -at X(s, t) =u(X(s, t), t)

and equations for determining f( s, t) from the current boundary configu
ration X(s , t). We solve these equations in a box n that contains r , with
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some convenient boundary conditions on the boundary of [2, e.g., periodic
boundary conditions as used by Peskin [54].

The box is then discretized by a uniform grid with grid points Xij =
(Xi, Yj) with Xi = ih and Yj = jh . The immersed boundary I' is represented
by a set of points Xk = (Xk, Yk), k = 1, 2, .. . , M with spacing which is
O(h). The Navier-Stokes equations (4.1) are discretized using any standard
technique on the uniform grid. The only difficulty is that the equation for
updating Uij, the velocity at Xij , will typically involve i ij , the forcing
function evaluated at this point. But since the singular force (4.2) has
support only on I', this will typically be zero at each Xij. We need some
method to spread the singular force (4.2) out to neighboring grid points on
the regular grid . This can be done by replacing the delta function by some
approximation, a sharply peaked function with unit integral and support
that extends only distance O(h) from the origin. In one space dimension a
simple choice is the hat function

(4.4)
if [z] < h

otherwise

though other choices are generally used in practice. In two space dimen
sions, the product dh (x)dh (y) can be used. The force Iij used in the discrete
equations at Xij is then given by

(4.5)
M

i ij = t1s L Fk(t)dh(Xi - Xk)dh(Yj - Yk)
k=l

where Xk = (Xk, Yk) and Fk(t) is the force at this point.
Moving the boundary requires interpolating the velocities from the

grid to r. One way to do this is to use the same discrete delta function
defined above and set

(4.6) U» = h2 L uijdh(Xi - Xk)dh(Yj - Yk).
i,j

Even when a highly accurate Navier-Stokes solver is used on the uni
form grid, there remains the interesting and difficult issue of the accuracy
of the immersed boundary procedure, i.e., the replacement of the boundary
conditions by a singular force that is spread to the uniform grid by discrete
delta functions. This has been analyzed in some simple cases by Beyer and
LeVeque [8] , who considered a 1D model problem of the form

(4.7) Ut =Ux x + c(t )8(x - a(t))

with the boundary conditions u(O, t) = u(l, t) = O. Here the point a(t)
plays the role of the immersed boundary rand c(t) is the strength of the
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singular source at a . In the simplest case a(t) == a is fixed and c(t) is a
smooth function that is given a priori . A discretization in the spirit of the
immersed boundary method would be the Crank-Nicolson method

(4.8) L(Uj+l - Un = ~(D;Uj + D;Uj+l) + c(tn+l/Z)dh(xj - a)

where D; is the second difference operator

z 1
DxUj = hZ(Uj+l - 2Uj + Uj-d

and dh is a discrete delta function such as (4.4). If c(t) == 0 then the Crank
Nicolson method is well known to be second order accurate in both space
and time. Beyer and LeVeque [8] showed that the method (4.8) remains
second order accurate for smooth functions c(t) provided that the discrete
delta function dh satisfies certain moment conditions.

When a(t) is moving, it was found that a correction term must be
added to the natural extension of the Crank-Nicolson method in order to
maintain second order accuracy [8]. This is because the time derivative of
the solution at a fixed grid point is not continuous in time as the point
a(t) passes this grid point . However, again the jump can be determined
directly from the equations and used to correct the formulas . This is an
indication that there may be difficulties in achieving second order accuracy
with the immersed boundary method in fluid dynamics problems, even with
an improved delta function.

In two dimensions it appears to be very difficult to obtain second
order accuracy near the boundary by using a simple discrete delta function .
Zhilin Li [47] found this to be so even for the simplest case of a steady state
Poisson problem

(4.9) U xx + U yy = f

where f is again given by a singular source on some curve r,

(4.10) f(x, y) = l F(s)J(x - X(s))J(y - Y(s)) ds.

The immersed boundary method would correspond to using the discrete
equations

(D; + D~)Uij = lij

where D; +D~ is the standard 5-point Laplacian and lij is given by (4.5).
There does not seem to be a simple way to define dh so that this yields
second order accuracy for arbitrary curves r.

It is, however, possible to obtain second order accuracy at all uniform
grid points by a different construction of the lij , as discussed in the next
section .
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5. The immersed interface method. In an attempt to obtain bet
ter accuracy for problems with delta-function source terms on an interface
cutting between grid points, a different approach was developed by Li [47]
and LeVeque and Li [45] , first in the context of elliptic equations such
as the Poisson problem mentioned above . This approach was called the
immersed interface method since it is similar in spirit to the immersed
boundary method but turns out to be applicable to a variety of interface
problems beyond immersed boundaries in incompressible flow. The basic
idea is most easily explained by considering the 1D model problem (4.7)
with o:(t) == 0:. Suppose we want to compute Ut(Xi , t) at some grid point
X i at time t. If 0: lies between grid points then Ut = u"" since the source
term vanishes at Xi . We can usually approximate u"" to second order by
the second difference

This is second order accurate provided 0: does not lie between Xi - l and
Xi +! . If it does , then the nonsmoothness of u(x, t) at 0: destroys the accu
racy of this approximation. The solution to (4.7) is continuous and so is
u"", but the first derivative u" has a discontinuity at X = 0: of magnitude
-c(t) . We can use this information to obtain a good approximation to u""
at grid points near 0: .

Suppose, for example, that Xj < 0: < Xj+l and we wish to approximate
u"",,(Xj , t). Expanding in Taylor series about 0: shows that

U(Xj, t) = u(o:, t) + (Xj - o:)u;(o:, t) + ~(Xj - 0:)2U""" (0:, t) + O(h3)

U(Xj+l' t) = u(o:, t)+(Xj+!-O:)U~(O: , t)+~(Xj+l-0:)2U",,(0: , t)+O(h3
) .

We use the notation

U;(o:, t) = lim u,,(x, t),
" -'+0-

U~(o:, t) = lim u,,(x , t)
,,-.+0+

for the limits as X approaches 0: from the left and right. (Note that conti
nuity of u""" allows us to simply write u",,(o:, t).)

We also have

U;(o:, t) = u,,(Xj , t) + (0: - Xj)u" ,,(Xj , t) + O(h2)

u~(o:, t) = u,,(Xj, t) + (0: - Xj)u" ,,(Xj , t) + [u,,] + O(h2
)

where [u ,,] = ut(o:, t) - u;(o:, t) is the jump in u" at 0:. Combining these
expressions gives
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Combining this with the standard Taylor series expansion of U(X j_l , t)
about u(Xj , t) ,

shows that

Since we know that

[U x ] = -c(t),

this gives an approximation to uxx(xj, t) :

1 1
Uxx(Xj, t) = h2 (u(Xj+l' t) - 2u(xj, t)+u(Xj-l> t)) + h2 (Xj+l - a)c(t) +O(h) .

Similarly, at Xj+l we find that

Uxx(Xj+l, t) = D;u(xj+l' t) + :2 (a - Xj )c(t ) + O(h).

At all other grid points Xi we can use D;U(Xi, t) alone to obtain a second
order accurate approximation.

It is interesting to note that these formulas can be combined in the
following general formula valid for all i, including j and j + 1:

if i = j, j+1

otherwise

where dh(x) is the hat function (4.4). Note that this is a discrete delta
function , so using the approximation (5.1) in a Crank-Nicolson method for
(4.7) gives precisely the method (4.8) with the particular choice (4.4) for
the discrete delta function. (See [8, 45] for more details .)

It turns out that we only need an O(h) local truncation error at these
grid points in order to obtain O(h2 ) global errors , since there are only two
grid points involved independent of h. It is this type of analysis that was
used in [8] to show that the immersed boundary method is second order
accurate in some cases for the 1D model problem.

In two dimens ions consider the Poisson problem (4.9). It can be shown
that the solution U will be continuous across r while the normal derivative
of U will have a jump discontinuity of magnitude F(s) . To devise a finite
difference scheme, we need to approximate uxx+u yy to at least O(h) at each
grid point (Xi ,Yj) near the interface. The standard 5-point approximation
D;Uij + D~Uij can be used provided that the interface r does not come
between any of the points in th is stencil. If it does, then we must add
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(5.2)

correction terms arising from jumps in derivatives across r , just as in the
1D expression (5.1). This correction can be derived by expanding U at
each grid point in the stencil about some common nearby point on I', e.g.,
the closest point on I' to (Xi,Yj) . The resulting formula for approximating
U x x + U yy will have the form

Ux x + U yy = D;Uij + D~Uij + Gi j + O(h)

where the correction term Gi j is zero away from I' and near I' will have
magnitude O(ljh) and depend on the source strength F(s). For details see
[45] . If this approximation is used to discretize

U x x + U yy = 0

then we will obtain the system

D;Ui j + D~Uij = -Gi j

which can be viewed as a discretization of the original equation (4.9). But
in this case, unlike the 1D model problem, it is not possible to derive the
correct Gij simply by using the formula (4.5) with an appropriate choice
of dh . The expression for Gi j can be obtained from the more general case
considered in [45] . The resulting formula involves not only the jump in
normal derivative of U along the interface but also the tangential derivative
of this jump and the curvature of the interface. These can all be obtained
from the original problem.

By computing the correct values Gi j , we are able to obtain a sec
ond order accurate method that is in the spirit of the immersed boundary
method, but in a case where the immersed boundary method itself fails
to deliver this accuracy. All that is required for this approach is a priori
knowledge of the jumps in certain derivatives across r. This can often be
determined from the PDE, as in the above examples .

Returning to the incompressible Navier-Stokes equations, we find that
this is also true. In this case the force density F(s, t) is a vector. By de
composing this into components normal and tangential to r, it is possible
to determine jumps in the pressure p and in derivatives of p and the ve
locities . It should be possible to use this information to derive appropriate
correction terms for a second order Navier-Stokes solver on a uniform grid .

5.1. Stokes flow. So far this has been completely carried out only
for the Stokes equations,

Px = J-l!:::"u + /(1)

Py = J-l!:::"v + /(2)

U x + v y = 0

where / = (1(1 ),/(2)) has the form (4.10). This problem can be reduced
to a set of Poisson problems (!:::..p = 0 and then J-l!:::"u =Px and J-l!:::"v =Py)
with known jumps in the functions and derivatives across r .
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Development of methods for this problem with a moving interface are
developed in [46]. The method is compared with the immersed boundary
method for a test problem studied by Tu and Peskin [68] consist ing of a
two-dim ensional "balloon" relaxing to a circular shape in a highly viscous
fluid. It is shown that the new approach yields second order accuracy in
both pressur e and velocity while an immersed boundary approach with th e
discrete delta function (4.4) gives only first order accuracy in velocit ies and
0 (1) errors in pressure near the discontinuity. Two-dimensional bubbles
are also considered in [46], in which the singular force at the int erface arises
from surface tension rather th an from an elast ic membr ane.

5.2. Stiffness and implicit methods. As in the immersed bound
ary method of Peskin, th e moving interface tracked in [46] is modeled by a
set of marker points which move with the local fluid velocity as interpolated
from the uniform grid on which velocity is computed. An explicit method
might be written symbolically as

(5.3)

where x n repres ents a vector of marker positions at time tn' Th e nonlinear
function U(X) is th e mapping from marker locations at some tim e to the
resulting velocities at the same point s. Evaluating U(X ) typically requires
evaluating forces at the points i , comput ing the resulting source te rms Fi j

on the uniform grid, solving the fluid equations, and interpolating velocities
back to the marker points i . Often this probl em is very st iff and the
t ime step t:i.t in the explicit met hod (5.3) must be taken very small in
order to avoid inst abili ties in which small oscillations in t he interface grow
exponent ially. Often a semi-implicit approach is used with t he immersed
boundary method to improve stability, see for example [68, 53, 55, 64].

For th e Stokes flow problem in [46] a fully impli cit met hod has been
used, based on th e trapezoidal method

(5.4)

The potential difficulty with this approach is that U(X) is expensive to
evaluate and it is impossible to explicitly compute th e Jacobian of this
mapping as would be required for a Newton-type method.

In [46], a quasi-Newton method has been used with good result s. With
this approach an app roximation to the Jacobian is built up in t he process of
iterating to solve th e nonlinear system (5.4), using rank 1 or rank 2 updates
of the previous approximation . In th e first t ime step the procedur e takes
quite a few iterations to converge, but in future tim e steps a good initial
approximation to the Jacobian is available from t he previous time step.
For the bulk of the computat ion only 2 or 3 iterations per t ime step are
required. This approach has also been successfully used for Hele-Shaw
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flow [36J and for Stefan problems with moving phase boundaries. It could
probably be used for many other problems of this type, also in conjunction
with the immersed boundary method or other methods for computing the
mapping Uri) .

Another device used in [46J to reduce the expense of the implicit
method is to represent the interface by relatively few marker points, with
the distance between them much larger than the mesh spacing of the Carte
sian grid. Cubic splines are then used to interpolate and compute jump
conditions as needed at various points on the interface in implementing the
immersed interface method.

5.3. Discontinuous coefficients. Besides providing the possibility
of a more accurate version of the immersed boundary method, the immersed
interface approach has the advantage that it can be applied to a wide class
of interface problems where discontinuities in the solution or its derivatives
across r arise from factors in the equations other than a singular source
term along r . For example, the Poisson problem

\l. (j3\lu) = f

with variable coefficients j3(x,y) which are discontinuous across an interface
r has a solution u which is continuous but has a discontinuous normal
derivative across r . This arises from the physical jump condition that the
flux j3 g~ must be continuous, which gives the jump condition required to
implement the immersed interface method. Problems of this form with
discontinuous coefficients arise in many applications, e.g., electrostatic or
steady state heat distribution problems in nonhomogeneous media, and
also in the Stokes flow problem described above if the fluids inside and
outside the balloon or bubble have different viscosities.

LeVeque and Li [45J showed how second-order accuracy could be ob
tained using the same idea of a Taylor series expansion as described in
Section 5 for this case, with the 5-point Laplacian replaced by a 6-point
stencil whose weights depend on the coefficients j3 and the location and cur
vature of the interface. Unfortunately, choosing the appropriate six points
to use and obtaining a method with uniformly good stability properties and
smooth behavior as the interface moves turns out to be difficult for some
problems . The problems with this approach have been the subject of more
recent research, and several improvements and alternatives have been pro
posed which give more robust results. See for example [9, 26, 48, 50, 72, 74J .
Wiegmann and Bube [73J have also extended this approach to a nonlinear
equation with discontinuous coefficients and singular sources.

6. Advection-diffusion equations. We now turn to some problems
where the finite-volume formulation of Figure l(d) is quite natural to use.
Suppose we wish to model the advection and diffusion of some substance
in a given velocity field (e.g., the transport of oxygen or other substances
in the blood or tissue, the dispersal of a pheromone) . In this section we
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assume the velocity field is known, and in the next section we will illus
trate how this technique can be applied together with immersed interface
ideas to compute time-varying velocities in incompressible flow using a
streamfunction-vorticity formulation.

The finite-volume framework is natural if we want to insure exact
conservation. Also, for the advection portion of the algorithm we can use
high-resolution "shock-capturing" finite-volume methods which can deal
with steep gradients or even discontinuities in the concentration without
introducing spurious numerical oscillations or excessive numerical diffusion.
The CLAWPACK software [40, 44], which applies to more general nonlinear
hyperbolic systems of equations, is used as the basis for the Cartesian grid
method we have developed.

Cartesian grid finite-volume methods for fluid dynamics with embed
ded boundaries have been the subject of much work recently, see for exam
ple [2, 4, 5, 18, 19, 31, 33, 38, 41, 42, 59, 61, 62]. Here we briefly review
the method developed in [10]. We solve the advection-diffusion equation

(6.1)

in two space dimensions, where q(x, y, t) is a density or concentration,
(u(x , y, t), v(x, y, t)) is the specified velocity field, D(x, y) is the diffusion
coefficient, and II;(X, y) is a capacity function. This function could repre
sent, for example, heat capacity if q is the temperature, or porosity in a
porous medium if q is the concentration of a transported solute. A funda
mental feature of the numerical method we have developed is the use of a
discrete version of II; which also incorporates information about the fraction
of a computational grid cell which lies in the physical domain. This is used
to obtain a method which is conservative as well as accurate and stable on
the cut cells.

The advection-diffusion equation (6.1) is solved using a fractional step
approach in which we alternate between solving the advection equation

(6.2)

and the diffusion equation

(6.3)

This allows a high-resolution explicit method to be used for the advection
equation while an implicit method is used for the diffusion equation.

6.1. Advection. We assume the incompressible velocity field is spec
ified via a streamfunction 'ljJ(x , y) with

u = 'ljJy , v = -'ljJx.

We assume that 'ljJ is known at all grid points in the rectangular com
putational domain, with 'ljJ identically constant in any "solid body" region
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where there is no fluid. The points where we need '¢ are the corners of
the finite-volume grid cells, e.g., '¢i-l /2,j-l/2 is the value at the lower left
corner of the (i, j) cell. Then differencing '¢ between any two corners gives
the integral of the normal velocity along the edge in between , so we easily
obtain average edge velocities

(6.4)

1
Ui - 1/ 2 ,j = t1y ('¢i-l /2,j+l /2 - '¢i- l/2,j- l/2)

1
Vi,j-l/2 = - t1x ('¢i+l/2,j-l /2 - '¢i- l /2,j - l /2)'

If we have accurate pointwise values of '¢ then the average velocities com
puted by (6.4) will be accurate even if the boundary cuts through an edge
of the cell. In this case the velocity does not approximate the fluid velocity
but rather the average over the edge taking into account the fact that the
normal velocity is zero over part of the edge. See [10] for more discussion
and the relation to "Darcy velocities" in porous media flow. These veloc
ities are exactly what are needed in computing fluxes across the edge in
the high-resolution methods for the advection equation. Moreover, these
velocities are divergence free on the discrete grid in the sense that

(6.5)

as is easily verified.
How '¢ is determined depends on the problem. It might be specified

analytically for steady-state flow in a simple geometry. Or we might com
pute it numerically based on some model of the fluid dynamics. In [10] we
consider flow in a porous medium with embedded objects, in which case
'¢ is obtained using Darcy's law by solving a Poisson problem. Accurate
pointwise values of '¢ on the Cartesian grid can be obtained using a variant
of the immersed interface method.

In Section 7 we discuss extensions of this approach to solving the
streamfunction-vorticity formulation of the time-dependent incompressible
Navier-Stokes equations. In this case the streamfunction must be recom
puted in each time step based on the vorticity distribution. Figures 3
through 5 show examples discussed later in which this solution is coupled
with an advection equation for a tracer in the fluid. Streamlines of the
flow at one instant are shown as contour lines of ,¢, and the concentration
of the advected tracer at this instant are also shown in these figures. The
gray tracer is injected at the left boundary starting at time t = O. In these
examples there is no diffusion, D = 0 in (6.1), and the sharp front in the
concentration is well captured.

6.2. Diffusion. We also solve the diffusion equation in a finite volume
setting, using the capacity function to handle the irregular geometry. The
diffusion step of the fractional step scheme is given by
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«q; = \I . (D(x ,y) \lq)

subject to Neumann boundary condit ions on the boundary of embedded
objects. This equation is discretized by using numerical fluxes at cell edges
to update the average value of q in each cell. These fluxes are the ap
proximation at cell edges to the quantity -Doq/on , where oq/on is the
derivative normal to the cell edge. At the edges of regular cells, these
fluxes are computed numeri cally by simply differencing th e values of q in
cells adjacent to the edge. At th e edges of irregular cells, we use bilinear
interpolation to approximate the normal derivatives at partial cell edges.
The details of these approximations can be found in [10].

Using these numerical fluxes, we discretize (6.6) using the second order,
implicit Crank-Nicolson scheme. Non-zero fluxes at the boundary of the
embedded objects are incorporated into the discretization as known source
terms. This discretization leads to a linear system of equations which is not
symmetric, because of the presence of the irregular cells, and so cannot be
solved using standard fast solvers. We use instead a linear iterative method
designed for non-symmetric systems. In particular, we have found that the
stabilized bi-conjugate gradient method (BiCGSTAB) of Van der Vorst [20]
works quite well.

Because we only use bilinear interpolation to compute fluxes at ir
regular cell edges, our method is formally only first order at these edges.
However, numerical results show that the method achieves global second
order accuracy. Another method developed by Johansen and Collela [38]
is formally second order and could be considered as an alternative to our
approach.

7. Streamfunction-vorticity equations. In the previous section ,
we described a numerical method for solving advection-diffusion equations
in complex geometries. However, we only considered transport in a steady
state velocity field iii», y) = (u(x, y) ,v(x , y) ) = ('l/Jy(x, y) , -'l/Jx (x, y)) . We
now want to consider methods for computing a time dependent velocity
field. Also, since fluid viscosity and friction at boundaries plays an im
portant role in many biological fluid dynamics problems, we also want to
include the effects of fluid viscosity and impose a no-slip boundary condi
tion on the velocity field at solid boundaries.

We begin by considering the three-dimensional Navier-Stokes equa
tions, given by

(7.1)
Ut + (u · \I)u + \lp =v\l2u

\I. u=0,

where u(x , y, z, t) = (u(x , y, z, t) ,v(x , y, z , t) ,w(x , y, z, t)) is the three
dimensional velocity, p(x , y, z , t) is the pressure field, and v the kinematic
viscosity. We have assumed that the density of the fluid is constant and
equal to 1. This is sometimes called the primitive variable formulation since
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desired quantities such as velocity and pressure are solved for directly. This
formulation serves as the basis for the projection method, a computational
method developed by Chorin [13J and in common use in the biological fluid
dynamics community [21, 24J.

One potential drawback to solving the primitive variable equations di
rectly is that we are not given any explicit boundary conditions on pressure.
To eliminate the pressure from equations (7.1), we can take the curl of the
momentum equation and obtain an equation for the vorticity w= \7 x it:

(7.2)

This equation is most tractable in two space dimensions, where w== (0,0, w)
and the vorticity transport equation (7.2) reduces to

(7.3)

where now, it = (u, v) and w =vx - uy is the scalar vorticity. Because the
velocity field is continuous and divergence free, we can introduce a function
'ljJ(x , y, t) for which

(7.4) u = 'ljJy, v = -'ljJx.

Using the definition of the vorticity, we have that 'ljJ satisfies the elliptic
equation \72'ljJ = -w. The function 'ljJ(x, y, t) has the property that

(7.5) (it·\7)'ljJ=o

so that level curves of 'ljJ trace out instantaneous particle paths or stream
lines of the flow. For this reason, 'ljJ is called a stream/unction .

The streamfunction-vorticity equations for incompressible flow are
then given by

(7.6)

Wt + (it · \7)w = 1/\72w

\72'ljJ =-w

U = 'ljJy , v = -'ljJx

subject to boundary conditions which we discuss momentarily. For a more
detailed discussion of these equations, one can consult anyone of a number
of elementary fluid dynamics texts, including [IJ and [15J .

The streamfunction-vorticity equations have certain computational
and modeling advantages over the primitive-variable formulation. First,
these equations are naturally decoupled into an advection-diffusion equa
tion for the vorticity and an elliptic equation for the streamfunction. Sec
ond, in two space dimensions, the vorticity is a conserved quantity and so
we can take advantage of high resolution finite volume advection algorithms
to solve the advection-diffusion equation for vorticity. Finally, the numeri
cally computed velocity field obtained by differencing the streamfunction as
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in (6.4) satisfies the discrete divergence free condition (6.5) exactly. From
a modeling point of view, one may actually prefer to compute vorticity and
streamlines directly, rather than velocity or pressure. For example, in [71],
Wang uses this formulation to compute vortex shedding behind flapping
insect wings. In [12, 11]' Cheer and Koehl compute the mass flux between
filtering appendages, which they represent as solid objects embedded in a
flow field. Such a computation can be done quite easily if the streamfunc
tion for the flow is known. Finally, quantities of aerodynamic interest, such
as lift and drag forces are easily computed from a given vorticity field.

Boundary conditions appropriate for the above equations are derived
from desired boundary conditions on the primitive variables. A no-flow
condition ii . ii = 0, where ii is the vector normal to a boundary, is im
posed by requiring that the tangential derivative of 'IjJ, 8'IjJ/8r, along the
boundary be zero, or that 'IjJ be constant along solid boundaries. Mathe
matically, this corresponds to imposing a Dirichlet condition on 'IjJ at the
solid boundaries. To impose the no-slip condition, we must require that
ii -f = 0, or that 8'IjJ / 8n = O. This corresponds to a Neumann condition on
'IjJ . If our domain is multiply-connected , we must also impose a circulation
condition on each object to insure the uniqueness of the streamfunction
solution. The fact that we must satisfy both 'IjJ = constant and 8'IjJ / 8n = 0
on 'IjJ appears to overdetermine the elliptic problem for the streamfunction.
However, when we consider the elliptic problem coupled with the vortic
ity transport equation, we see that we have exactly the right number of
boundary conditions. This is seen most easily by eliminating w from the
equations and considering the resulting biharmonic equation for 'IjJ.

When considering how to solve the coupled system of equations nu
merically, however, we are faced with the problem that we do not have any
explicit boundary conditions on w, and seemingly too many for 'IjJ . Math
ematically, a shear gradient in the boundary layer at a solid boundary is
coincident with the presence of non-zero vorticity there. Although phys
ically the mechanism by which vorticity appears near solid boundaries is
not so clear, it is nonetheless common to appeal to the notion of "vortic
ity generation" near solid boundaries and to consider numerical methods
which introduce vorticity into the domain at these boundaries in an amount
that exactly cancels the slip velocity, thereby satisfying the boundary con
dition 'ljJn = O. Considerable research has gone into deriving schemes for
introducing vorticity into the domain or coming up with conditions on the
vorticity that insure that the no-slip boundary condition will be satisfied .
See for example [66, 37, 14, 60, 3, 23] . Our approach is in the spirit of vor
ticity generation, in that we derive a flux condition on the vorticity that
introduces vorticity into the domain and cancels the slip velocity at the
boundary.

For the remainder of this section, we discuss our approach to solving
equations (7.6) on a Cartesian grid in the presence of embedded complex
geometry. A typical example of the geometry we have considered so far is
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the multiply-connected exterior region shown in Figure 2. Although our
methods are applicable to very general geometries, we focus here on the
exterior flow problem for a couple of reasons. First, the problem of flow
around isolated objects arises in a number of problems in bio-fluid mechan
ics, including flow around swimming organisms [22]' filtering appendages
[12, 11,39], through tissue past capillaries [67] and flapping wings [71] . Sec
ond , we wanted to be able to compare our results to standard ben chmark
problems, of which the classic problem is flow past a cylinder. Finally,
we wish to discuss the additional constraints that one must impose on the
streamfunction in a multiply-connected domains.

~ .. ".,
'.4'!'

," II I ~ I
I'

k ~ f\.
fo;...1-.... I'«, 17

~

.... i"o
""

FIG. 2. A typ ical grid on which the stream/unction vorticity equations are solved.
The flow domain is the region exterior to the em bedded object s. The objects are assumed
to be stationary and rigid .

We assume that the embedded objects shown in Figure 2, labeled
nj , j = 1, ... Mbod ies are stationary and rigid, and so we must satisfy both
a no-normal flow and a no-slip boundary condition on each object. On the
boundary of the computational domain, we impose inflow conditions at the
left edge, outflow conditions at the right edge, and free stream conditions on
the top and bottom edges. The top and bottom act like free-slip boundaries
parallel to the direction of the mean flow.

To solve the advection-diffusion equation in (7.6) for the vorticity, we
use the fractional step approach described in Section 6. First, a given
vorticity field is advected using a velocity field computed from the current
streamfunction. The irregular geometry is handled using the capacity func
tion, as described in Section 6. In this step , we impose no-flux boundary
conditions on the embedded objects. The advection step is followed by the
diffusion step described in Section 6.2. In this diffusion step, we impose a
non-zero flux condition 8w / 8n = 9 at the solid boundaries. This flux 9 is
determined by solving an auxiliary Stokes flow problem, described below.
In the process of solving this Stokes flow problem, we also determine a
streamfunction 'l/J which we use to update our velocity field, and, because
it satisfies the Stokes flow problem, satisfies 'l/Jn = O.
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The auxiliary Stokes flow problem is given in terms of a node-based
quantity W, obtained as a result of averaging the cell-averaged quantity w
onto grid nodes . The Stokes flow problem is

(7.7)

Wt = v'V2w,
'V2 '¢ = -w,

'¢n =0,

l aw
-ads=O.

oa, n

8w/8n = g,

'¢ =~j '

(x,y) E 8n

(x, y) E an j

(x,y) E an
j = 1, ... Mbodies

where the flux 9 of vorticity along the boundaries of the objects is an
unknown in the problem. Physically, the vorticity distribution w(x, y, t +
At) that results from applying the flux 9 over a single time step At has
the property that the solution to 'V21/J = -w satisfies '¢n = 0, in addition
to the Dirichlet condition 1/J = ~j '

The constants ~j' j = 1, . .. Mbodies are also unknowns in the problem
and are determined so that the circul ation I'j

(7.8) r, = r a.ids = 1 1/Jn ds = 1w dA
J8fl ; 8fl; n,

around each object nj remains constant in time. This condition is satisfied
by requiring that the net flux of vorticity into the bodies be zero for all
time, or that the last equation in (7.7) hold. Note that we don't require
that the circulation around the objects be zero; the circulation is deter
mined initially by our choice of '¢n (or, equivalently by the initial vorticity
distribution inside each object) . Of course, when the bodies are stationary,
then the no-slip condition is just 1/Jn = 0 and inside of each body we have
w == 0, so that for each body, f j = 0 for all time.

To discretize the equations for the Stokes flow problem in (7.7), we use
a modified version of the Immersed Interface Method described in Section 5
of the sort developed in [9, 75, 72]. The IIM, as applied to these problems,
gives second order accurate solutions to 1/J and W, and 1/Jn = 0 is satisfied
to second order. Once we have discretized the equations, we can easily
solve them by recognizing that we can set up a linear system for the flux
function 9 evaluated at discrete locations along the solid boundaries. This
linear system can either be solved directly, by explicitly forming a matrix
equation, or solved iteratively, using for example, the Generalized Minimum
Residual algorithm (GMRES) . Numerical tests demonstrate that this linear
system is quite well conditioned [9].

7.1. Numerical results for the streamfunction-vorticity equa
tions. Comparison of our results with those from the standard benchmark
problem, flow around a cylinder, show that our algorithm yields results that
are in excellent agreement with other published computational and experi
mental results . In [9], Calhoun compared the results of the above algorithm
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with the experimental results of Coutanceau and Bouard [16, 17] and the
computational results of Fornberg [30] and found that velocity fields and
vorticity wakes were quite well reproduced. For low Reynolds number flows
(Re < 40), the flow remains steady and symmetric and any small perturba
tions in the wake of the cylinder are damped. At around Reynolds number
50, the streamline wake begins to oscillate and by Reynolds number 100,
vortices are shed behind the cylinder forming the well known von Karman
vortex street.

In the three sets of plots in Figures 3 to 5, we show results of our nu
merical algorithm for more complicated flowsat Reynolds numbers varying
from Re = 20 for Figure 3 to Re ~ 100 for Figure 5. In each case, the
Reynolds number is based on the diameter of the object(s). In each set of
plots , we show the streamfunction, advection of a tracer (grey shaded ma
terial), the horizontal velocity field and the vorticity distribution at some
fixed time . For the calculation shown in Figure 3, the flow has reached a
steady state, and there is no vortex shedding in the wake behind the bodies .
From the plots of the horizontal velocities, one can see that the boundary
layer around each object is fairly thick , and from the tracer plots, signif
icantly more tracer is flowing around the objects than between them. In
the calculation shown in Figure 4 at Re = 40, the shear gradient is steeper
(and the boundary layer thinner) and more tracer material flows between
the embedded objects. The last set of plots in Figure 5 provides an exam
ple of vortex shedding behind a complex bluff body. In this example, the
boundary layers are fairly thin, although there are large areas where the
velocity is essentially zero due to the shielding effect of the body on the
flow.

Our goal in showing these plots is to demonstrate that our algorithm
produces realistic results in some biologically relevant regimes. Our choice
of examples was motivated to some extent by the work of Cheer and Koehl
[12,11], who considered flow around fixed objects. Wang [71] also considers
flow around a fixed wing, and so in principle our scheme could be used for
these calculations as well. However, these examples, as well as most other
interesting examples in biofliud mechanics, really involve moving and de
forming boundaries and more complicated boundary conditions. For these
reasons , we are now considering methods for incorporating these features
into our finite difference/finite volume methods.

Adding the more complicated boundary conditions should be a simple
modification to the code. We would like to consider problems in which the
boundaries of the embedded objects are absorbing or releasing some tracer
material (with concentration q) into the flow. In general, the flux rate of
this tracer will depend on the amount of tracer present near the boundary,
and so this will lead to a boundary condition on the tracer that takes the
form 8q/8n = f(q ,x, t), where f may be a linear or non-linear function of
q. This type of boundary condition appears , for example , in oxygenation
of tissue, where the flux of oxygen through capillary walls is proportional
to the partial pressure of oxygen in the tissue [67].
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U- Velool y Vort icity
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FIG. 3. Flow past objects at Re = 20 Several quant it ies are illustrated at the same
instant in tim e.

We are currently working on extending our method to moving bound
aries . Successful Cartesian-grid finite-volume methods for moving geome
tries have been developed for compressible flow, see [32] for one example.
Our goal for incompressible flow is still to solve the streamfunction-vorticity
equations for the fluid motion on a uniform grid , along with advection
diffusion equations for any tracer concentrations. The volume of the finite
volume cells will now be time-dependent, however, as the boundaries move
through the grid . In the future we also hope to combine this algorithm
with an immersed interface method for flexible membranes immersed in
the fluid.

8. Summary. We have presented an overview of some recent work
on Cartesian grid methods for solving fluid dynamics in complex geome
try. The immersed boundary and immersed interface methods are finite-
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Streamlines Tracer

F IG. 4. Flow past objects at Re = 40 . Several quant it ies are illustrated at the same
instant in time.

difference methods which can deal with discontinuities in the solution across
boundaries or interfaces. These methods are often used for problems with
moving boundaries as well, in cases where the motion of the boundary is
coupled to the fluid dynamics .

Finite-volume methods have some advantages for problems where con
servation is important, and steep gradients in the solution can be well
resolved by high-resolution methods. The finite-volume method described
here for advection-diffusion and the streamfunction-vorticity equations can
deal with complex geometries. We have developed an approach to deter
mine the flux of vorticity at a no-slip wall based on the behavior of the
streamfunction at the wall (as computed by a finite-difference immersed
interface method). This gives the required boundary condition for vortic
ity.
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FIG. 5. Flow at Re :::; 100 with vortex shedding. Several quantities are illustra ted
at the same instant in time.



140 RANDALL J. LEVEQUE AND DONNA CALHOUN

REFERENCES

[1] D.J . ACHESON, Elementary Fluid Dynamics , Oxford Applied Mathematics and
Computing Science Series, Clarendon Press, 1990.

[2J A.S . ALMGREN , J.B . BELL, P . COLELLA, AND T. MARTHALER, A Cartesian grid
projection method for the incompressible Euler equations in complex geome
tri es, SIAM J . Sci. Comput. , 18 (1997), pp . 1289-1309.

[3] C. ANDERSON, Vorticity Boundary Conditions and Boundary Vorticity Genera
tion for Two-dimensional Viscous Incompressible Flows, J . Comput . Phys.,
80 (1989) , pp. 72-97.

[4] M. BERGER AND R .J . LEVEQUE, An adaptive Cartes ian m esh algorithm for the
Euler equations in arbitrary geometries . AIAA paper AIAA-89-1930, 1989.

[5J --, Stable boundary conditions for Cartes ian grid calculations, Computing
Systems in Engineering, 1 (1990) , pp . 305-311 .

[6] R.P. BEYER, A computational model of the cochlea using the immersed boundary
method, PhD thesis, University of Washington, 1989.

[7] --, A computational model of the cochlea using the immersed boundary method,
J . Comput. Phys., 98 (1992) , pp . 145-162.

[8J R.P . BEYER AND R.J. LEVEQUE, Analysis of a one-dimensional m odel for the
immersed boundary method, SIAM J . Num . Anal., 29 (1992), pp. 332-364.

[9J D. CALHOUN, A Carte sian grid method for solving the streamfunction -vort icity
equations in irregular geometries, PhD thesis , University of Washington, 1999.

[10] D. CALHOUN AND R .J . LEVEQ UE, Solving the advect ion-diffusion equati on in ir 
regular geomet ries, J . Comput. Phys., 156 (2000), pp . 1-38

[l1J A. CHEER AND M. KOEHL, Fluid flow through filt ering appendages of insects,
IMA Journal of Mathematics Applied in Medicine and Biology, 4 (1987),
pp . 185-199.

[12] --, Paddles and Rakes: Fluid Flow through ristled Appendages of Small Or
ganisms, J . Theor. Bio!., 129 (1987) , pp. 17-39.

[13] A.J. CHORIN, Numerical solut ion of the Navier-Stokes equation s, Math. Comp.,
22 (1968), pp . 745-762.

[14] --, Numerical stud y of slightly viscous flow, J. Fluid Mech., 15 (1973) ,
pp . 785-796.

[15] A.J . CHORIN AND J .E . MARSDEN, A Mathematical Int roduction to Fluid Mechan
ics, Springer-Verlag, 1979.

[16J M. COUTANCEAU AND R. BOUARD, Experim ental determ ination of the mai n fea
tures of the vicous flow in the wake of a circular cylinde r in unifo rm transla 
tion . Part I. Steady flow, J. Fluid Mech., 19 (1977), pp. 231-256.

[17J --, Exper imental determination of the main features of the vicous flow in the
wake of a circular cylinder in uniform translation. Part II. Unsteady flow, J.
Fluid Mech ., 79 (1977) , pp . 257-272.

[18J M.S. DAY, P . COLELLA, M.J . LIJEWSKI, C.A. RENDLEMAN, AND D.L . MARCUS ,
Embedded boundary algorithms for solving the Poisson equation on complex
domains. Preprint LBNL-41811, Lawrence Berkeley Lab, 1998.

[19J D. DE ZEEUW AND K. P OWELL, An adaptively-refined Carte sian m esh solver for
the Euler equations, J . Comput. Phys. , 104 (1993), pp . 56-68.

[20] H.V . DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi
CG for the solut ion of non symmetric linear systems, SIAM J. Sci. Statist.
Comput., 13 (1992), pp . 631-644.

[21J R. DILLON, L. FAUCI, A. FOGELSON, AND D. GAVER, Modeling Biofilm Processes
Using the Immersed Boundary Method , J. Comput. Phys., 129 (1996) , pp. 57
73.

[22] R. DILLON, L. FAUCI, AND D. GAVER, A Microscale Model of Bacterial Swimming,
Chemotaxis and Substrate Transport, J. Theor. Biol. , 177 (1995), pp . 325-340.

[23J W. E AND J. LIU, Vort icity Boundary Condit ion and Related Issues for Fin ite
Difference Schemes, J . Comput. Phys., 124 (1996) , pp . 368-382.



CARTESIAN GRID METHODS FOR COMPLEX GEOMETRIES 141

[24] L. FAUCI AND C.S. PESKIN, A computational model of aquatic animal locomotion,
J . Comput. Phys., 77 (1988), pp . 85-108.

[25] L.J . FAUCI, Interaction of oscillating filaments - a computational study, J . Com
put. Phys., 86 (1990), pp . 294-313.

[26] A. FOGELSON AND J . KEENER, Immersed interface methods for Neumann and re
lated problems in two and three dimensions, to appear, SIAM J. Sci. Comput .

[27] A.L. FOGELSON , A mathematical model and numerical method for studying platelet
adhesion and aggregation during blood clotting, J . Comput. Phys., 56 (1984) ,
pp . 111-134.

[28] --, Mathematical and computational aspects of blood clotting, in Proceedings
of the 11th IMACS World Congress on System Simulation and Scient ific Com
putation, Vol. 3, B. Wahlstrom, ed ., North Holland, 1985, pp . 5-8.

[29] A.L . FOGELSON AND C.S. PESKIN, Numerical solution of the three dimensional
stokes equations in the presence of suspended particles , in Proc. SIAM Conf.
Multi-phase Flow , SIAM, June 1986.

[30] B. FORNBERG, A numerical study of steady viscous flow past a circular cylinder,
J . Fluid Mech., 98 (1980) , pp . 819-855.

[31] H. FORRER, Boundary Treatments for Cartesian-Grid Methods, PhD thesis, ETH
Zurich, 1997.

[32] H. FORRER AND M. BERGER, Flow simulations on Cartesian grids involving com
plex moving geometries , in Proc. 7'th IntI. Conf. on Hyperbolic Problems,
R . Jeltsch, ed ., Birkhauser Verlag, 1998, pp . 315-324.

[33] H. FORRER AND R. JELTSCH, A higher-order boundary treatment for Cartesian-grid
methods, J . Comput . Phys., 140 (1998), pp . 259-277.

[34] R . GLOWINSKI, T. -S . PAN , AND J . PERIAUX, A fict itious domain method for Diri ch
let problem and applications, Compo Meth. Appl. Mech . Eng. , 111 (1994),
pp . 283-303.

[35] --, A fictitio us domain method for exte rnal incompressible viscous flow mod
eled by Navier-Stokes equations, CompoMeth. Appl. Mech . Eng ., 112 (1994),
pp . 133-148.

[36] T .Y . Hou, Z. LI, H. ZHAO , AND S. OSHER, A hybrid method for mov ing inter
face problems with application to the Hele-Shaw flow, J . Comput . Phys., 134
(1997), pp . 236-252.

[37] M. ISRAELI, On the Evaluation of Iteration Parameters for the Boundary Vorticity,
Studies in Applied Mathematics, Ll (1972) , pp. 67-71.

[38] H. JOHANSEN AND P . COLELLA , A Cartesian grid embedded boundary method
for Poi sson's equation on irregular domains, J . Comput . Phys ., 147 (1998) ,
pp .60-85.

[39] M. KOEHL, Fluid flow through hair-bearing appendages : Feeding, smelling, and
swimming at low and interm ediate Reynolds numbers., in Biological Fluid
Dynamics, C.P. Ellington and T .J . Pedley, eds ., Vol. 49, Soc. Exp. BioI. Symp,
1995, pp . 157-82.

[40] R .J . LEVEQUE, CLAWPACK software .
http ://www.amath .washington .edu/-rjl/clawpack .html.

[41] --, Cartes ian grid methods for flow in irregular regions, in Num, Meth. FI.
Dyn. III, KW. Morton and M.J . Baines, eds ., Clarendon Press, 1988, pp. 375
382.

[42] --, High resolution finite volume methods on arbitrary grids via wave propa
gation, J . Comput . Phys., 78 (1988), pp . 36-63.

[43] --, Numerical Methods for Conservation Laws, Birkhauser-Verlag, 1990.
[44] --, Wave propagation algorithms for multi-dimensional hyperbolic systems, J .

Comput . Phys ., 131 (1997), pp . 327-353.
[45] R.J . LEVEQUE AND Z. LI, The immersed interface method for elliptic equations

with discontinuous coefficients and singular sources, SIAM J . Numer. Anal .,
31 (1994), pp . 1019-1044.



142 RANDALL J. LEVEQUE AND DONNA CALHOUN

[46] --, Immersed interface methods for Stokes flow with elastic boundaries or
surface tension, SIAM J . Sci. Comput., 18 (1997), pp . 709-735.

[47] Z. LI, The Immersed Interface Method - A Numerical Approach for Partial Dif
ferential Equations with Interfaces, PhD thesis, University of Washington,
1994.

[48] --, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer.
Ana!., 35 (1998), pp. 230-254 .

[49] --, The immersed interface method using a fin ite element formulation, Applied
Numer. Math., 27 (1998), pp . 253-267.

[50] X .-D . Liu, R .P . FEDKIW, AND M. KANG, A boundary condition capturing method
for Poisson's equation on irregular domains. CAM Report 99-15, UCLA Math
ematics Department, 1999.

[51] A. MAYO, The fast solution of Poisson's and the biharmonic equations on irregular
regions , SIAM J . Num. Anal., 21 (1984), pp. 285-299 .

[52] A. MAYO AND A. GREENBAUM, Fast parallel iterative solution of Poisson's and the
biharmonic equations on irregular regions, SIAM J . Sci. Stat . Comput ., 13
(1992), pp. 101-118.

[53] A.A . MAYO AND C.S . PESKIN, An implicit numerical method for fluid dynam
ics problems with immersed elastic boundaries, Contemp. Math., 141 (1993),
pp. 261-277.

[54] C.S . PESKIN, Numerical analysis of blood flow in the heart, J . Comput. Phys ., 25
(1977), pp . 220-252.

[55] --, Lectures on mathematical aspects of phys iology, Lectures in App!. Math.,
19 (1981), pp. 69-107.

[56J C.S. PESKIN AND D.M . MCQUEEN, Modeling prosthetic heart valves for numerical
analysis of blood flow in the heart, J . Comput. Phys., 37 (1980), pp . 113-132.

[57] --, Computer-assisted design of pivoting-disc prosthetic mitral valves, J . Tho
rae. Cardiovasc. Surg., 86 (1983), pp . 126-135.

[58J --, Computer-assisted design of butterfly bileaflet valves for the mitral position,
Scand. J. Thorac. Cardiovasc. Surg., 19 (1985), pp . 139-148.

[59] K . POWELL, Solution of the Euler and Magnetohydrodynamic Equations on
Solution-Adaptive Cartesian Grids . Von Karman Institute for Fluid Dynamics
Lecture Series , 1996.

[60] L. QUARTAPELLE AND F . VALZ-GRIZ, Projection conditions on the vorticity in vis
cous incompressible flows , Int . J. Numer. Methods. Fluids, 1 (1981) , pp. 129
144.

[61] J .J . QUIRK, An alternative to unstructured grids for computing gas-dynamic flow
around arbitrarily complex 2-dimensional bodies, Comput . Fluids, 23 (1994),
pp . 125-142.

[62] --, A Cartesian grid approach with hierarchical refinement for compressible
flows . ICASE Report No. TR-94-51, NASA Langley Research Center, 1994 .

[63] J .M. STOCKIE AND S.l. GREEN, Simulating the motion of flexible pulp fibres using
the immersed boundary method, J . Comput . Phys., 147 (1998), pp . 147-165.

[64] J .M. STOCKIE AND B.T.R. WETTON, Stability analysis for the immersed fiber prob
lem, SIAM J. App!. Math., 55 (1995), pp . 1577-1591.

[65] D. SULSKY AND J.U. BRACKBILL, A numerical method for suspension flow, J .
Comput . Phys., 96 (1991), pp. 339-368.

[66] A. THOM, The flow past circular cylinders at low speeds, Proc. Roy . Soc. A, 141
(1933), p . 651.

[67] M . TITCOMBE AND M.J . WARD, An asymptotic study of oxygen transport from
multiple capillaries to skeletal muscle tissue, to appear, SIAM J . App!. Math.,
2000 .

[68] C . Tu AND C.S . PESKIN, Stability and instability in the computation of flows with
moving immersed boundaries: a comparison of three methods, SIAM J . Sci.
Stat. Comput ., 13 (1992), pp . 1361-1376.



CARTESIAN GRID METHODS FOR COMPLEX GEOMETRIES 143

[69] S.O . UNVERDI AND G. TRYGGVASON, Computations of multi-fluid flows , Physica
D, 60 (1992), pp. 70-83 .

[70] --, A front-tracking method for viscous, incompressible, multi-fluid flows , J .
Comput . Phys. , 100 (1992), pp . 25-37.

[71J Z.J . WANG, Vortex shedding and frequency selection in flapp ing flight . Submitted
to the J . Fluid Mech ., 1999.

[72] A. WIEGMANN, The Explicit Jump Immersed Int erface Method and Interface Prob
lems for Differential Equations, PhD thesis , University of Washington, 1998.

[73] A. WIEGMANN AND K.P . BUBE, The immersed interface method for nonlinear dif
ferent ial equations with discontinuous coeffi cien ts and singular sources, SIAM
J . Numer. Anal ., 35 (1998), pp. 177-200.

[74] --, The explicit jump immersed interface method: Finite difference methods
for pde with piecewise smooth solut ions , SIAM J . Numer. Anal., 37 (2000),
pp. 827-862.

[75] Z. YANG , A Cartesian grid method for elliptic boundary value problems in irregular
regions, PhD thesis , University of Washington, 1996.




