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Abstract. We describe a class of logically rectangular quadrilateral and hexahedral grids for solving
PDEs in circular and spherical domains, including grid mappings for the circle, the sur-
face of the sphere, and the three-dimensional ball. The grids are logically rectangular and
the computational domain is a single Cartesian grid. Compared to alternative approaches
based on a multiblock data structure or unstructured triangulations, this approach sim-
plifies the implementation of numerical methods and the use of adaptive refinement. A
more general domain with a smooth boundary can be gridded by composing one of the
mappings from this paper with another smooth mapping from the circle or sphere to the
desired domain. Although these grids are highly nonorthogonal, we show that the high-
resolution wave-propagation algorithm implemented in clawpack can be used effectively
to approximate hyperbolic problems on these grids. Since the ratio between the largest
and smallest grids is below 2 for most of our grid mappings, explicit finite volume methods
such as the wave-propagation algorithm do not suffer from the center or pole singularities
that arise with polar or latitude-longitude grids. Numerical test calculations illustrate the
potential use of these grids for a variety of applications including Euler equations, shal-
low water equations, and acoustics in a heterogeneous medium. Pattern formation from a
reaction-diffusion equation on the sphere is also considered. All examples are implemented
in the clawpack software package and full source code is available on the web, along with
MATLAB routines for the various mappings.

Key words. circular domain, spherical domain, grid transformations, finite volume methods, hyper-
bolic PDEs

AMS subject classifications. 65M06, 65M50, 65Y15, 35L60, 58J45

DOI. 10.1137/060664094

1. Introduction. Uniform Cartesian grids are well suited to solving partial dif-
ferential equations (PDEs) in rectangular regions. Logically rectangular quadrilateral
grids work well for many problems where the domain is a deformed rectangle. For
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example, in an annulus a rectangular grid in polar r-θ coordinates can be used with
periodic boundary conditions in the θ direction.

It is not so clear that quadrilateral grids are appropriate for solving problems in
smooth domains such as a circle (i.e., a planar disk). Polar coordinates could again be
used over a rectangular computational domain, but when polar coordinates are used
over the full circle there may be numerical difficulties arising at the center of the circle
where all of the radial grid lines meet at a single point in physical space. While it is
possible to use finite volume methods in this context, these converging grid lines give
rise to cells near the center that are much smaller than cells elsewhere in the domain.
For explicit finite volume methods the CFL condition may then require a very small
time step everywhere. Similar problems arise when using a latitude-longitude grid on
the sphere.

In this paper we consider a family of quadrilateral and hexahedral grids for the
numerical solution of PDEs on smooth “circular” domains in two dimensions, on the
surface of the “sphere” as a two-dimensional manifold, and within a “ball” or “spher-
ical shell” in three dimensions. We use quotes to indicate that the grids discussed
in this paper for circles, spheres, and balls can be easily extended to other smooth
domains that can be obtained by applying a mapping to the circle or sphere. We give
one such example in section 8.3, but mostly concentrate on the basic mappings for
circles and spheres.

The grids we discuss are logically rectangular quadrilateral grids in two dimensions
indexed by (i, j) and hexahedral grids in three dimensions indexed by (i, j, k). (By
hexahedral we mean simply six-sided; the faces are not generally planar.) These grids
are obtained as the mapping of a single rectangle or rectangular block and do not
require multiblock data structures. The ratio of largest to smallest cell is modest,
i.e., for the sphere this ratio is less than two. On the other hand, the mapping
functions are not smooth and the grids are far from orthogonal near the boundary of
the computational domain, and so care must be taken when implementing solvers on
these grids. In section 8 we consider a variety of test problems and show that, when
suitable methods are used, very good results can be obtained. We focus primarily
on hyperbolic problems using the clawpack software [33], which implements high-
resolution finite volume methods based on Riemann solvers in a framework that works
well on arbitrary logically rectangular grids. The grids we discuss may be useful for
other problems as well and in section 8.7 we consider an example of pattern formation
on the sphere where a set of reaction-diffusion equations are solved.

The grid mappings we will discuss are most easily described as MATLAB func-
tions. These are included in the text below and are also available on the webpage
[14]. Complete source code for all of the numerical examples presented in section 8
is also available there, along with additional examples and figures and animations of
some results. Python versions for some of the mapping functions are also available
on the webpage.

2. Other Approaches. There are many possible grids that can be used for com-
putations in circular or spherical domains. We focus here on the development of logi-
cally rectangular grids because there are situations in which such grids are needed. In
particular, the clawpack software for hyperbolic problems requires logically rectan-
gular grids, but has the advantage that a wide variety of hyperbolic problems can then
be robustly solved, as illustrated in our examples in section 8. Moreover, adaptive
mesh refinement is available in this package, based on refinement on logically rectan-
gular patches of the domain. An example where this is used is given in section 8.5,
with others on the webpage [14].
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Among logically rectangular grids, polar coordinates are an obvious choice for
circular domains as well as the sphere, but have the problem of the singularity at the
center where all grid lines coalesce (so that the grid is not truly quadrilateral every-
where). The disparity in the sizes of grid cells can lead to severe time step restrictions
when using explicit methods due to the small cells near the center. Conversely, the
cells are highly stretched in the θ direction near the edges relative to the center, which
may lead to poor accuracy.

Grids on the surface of the sphere can be obtained by inscribing a suitable poly-
hedron inside the sphere and using the gnomic projection (projection from the inside
of the sphere) to map the surface of the polyhedron to the surface of the sphere. For
example, if an icosahedron is inscribed in the sphere and projected to the surface, a
quasi-uniform cell distribution on the sphere is obtained. The faces of the icosahedron
can be further triangulated to obtain a finer mesh. This approach was introduced by
Sadourny, Arakawa, and Mintz [45] in 1968. Logically quadrilateral grids can be
obtained by using a polyhedron with rectangular faces. The most elementary such
polyhedron is the cube, which creates six large rectangular elements which can be
further refined. There are eight singular vertices where three grid cells come together
instead of four. Computing on such a grid can be done if boundary data from each
grid is properly transferred to the boundaries of neighboring grids. Rossmanith has
explored the use of such grids for finite volume methods [42], [43]. He found that the
wave-propagation algorithms of clawpack are quite robust on these grids and have
no difficulties at the singular vertices, although properly transferring boundary data
between the blocks is a bit subtle and the multiblock implementation makes it harder
to apply adaptive mesh refinement. This type of grid on the sphere is sometimes
called a “gnomonic grid” and was also introduced by Sadourny; see [44]. It has more
recently been used by other researchers for geophysical flow problems as well, e.g.,
[1], [40], [41]. This kind of discretization can also be used for a circular domain, by
mapping five rectangular grids to a circle; see [42].

Another approach for discretizing the sphere that has recently been proposed is
the yin-yang grid; see [28], for example. Two logically rectangular latitude-longitude-
type grids overlap to cover the sphere and eliminate the pole problem. A related
approach is to use a true latitude-longitude grid over the midlatitudes with over-
lapping rectangular patches near the two poles. The disadvantage of these grids is
that some form of interpolation must be used in the overlap regions. If solutions of
conservation laws are approximated on such grids, the interpolation leads to a loss
of conservativity. In [31], a combined grid consisting of a reduced longitude-latitude
grid and a stereographic grid at the polar caps was used that avoids the need for
interpolation but still requires different grids that have to be merged together.

Logically rectangular grids can also be obtained by variational (or PDE) methods.
There exists extensive literature on such methods [15, 37]. Geometric considerations
are used to derive functionals for controlling the smoothness, the area or volume
of grid cells, or the degree of nonorthogonality. It would be interesting to apply
such techniques to the grids presented in this paper in order to generate smoother
meshes that still maintain reasonable cell-size ratios and can be represented by a single
logically Cartesian grid in computational space.

One way to use rectangular grids in general nonrectangular regions is to employ
a “cut-cell Cartesian” or “embedded boundary” approach, in which a geometry is
embedded in a Cartesian grid and grid cells are arbitrarily cut by the boundary.
Cut-cell methods are attractive for complex geometries for several reasons. Grid
generation is basically trivial once a general procedure has been developed to specify
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the geometry. The grid is a uniform Cartesian grid away from the boundary, which
typically simplifies the numerical method and may improve its accuracy over most of
the domain. On the other hand, some special treatment of the cut cells is required to
maintain good accuracy and stability properties.

We have worked on the development of such methods in the past (e.g., [5], [6],
[9], [11], [13], [25], [35]) and believe that it is a good approach for complex geometries.
This approach has been advanced by many other researchers as well, for hyperbolic
equations (e.g., [16], [17], [19], [20]), elliptic equations (e.g., [27], [38], [39]), and
incompressible Navier–Stokes equations (e.g., [2], [32]).

In this paper, we focus our attention on simple domains in two space dimensions
where the use of a mapped coordinate system is natural and often easier to work with
computationally than embedded boundaries or cut cells.

3. Quadrilateral Grids in the Circle. We begin by discussing several possible
mappings to the circle. Similar mappings appear elsewhere in the literature, e.g., [3],
[26], though we have not seen this approach explored systematically in the form of
the specific mappings we introduce below. We also test these grids in the context of
high-resolution finite volume methods for hyperbolic equations.

3.1. The Radial Projection Mapping. Figure 3.1 shows one possible quadrilateral
grid obtained by a simple mapping from a Cartesian grid on a square domain. Two
lines of grid cells are shaded to help visualize the mapping. This mapping is obtained
by taking each point on the square [−1, 1] × [−1, 1] and projecting it radially to the
unit circle. All points along the radial line through this point are rescaled linearly
and so the square is contracted into a circle. This mapping has the property that the
grid cells along the 45 degree lines end up being nearly triangular, with two edges of
the quadrilateral cell nearly colinear even though in computational space these edges
are orthogonal. This grid may not be suitable for use with standard finite difference
methods, but still works well when appropriate methods are used, such as the high-
resolution wave-propagation algorithms [36] for hyperbolic problems, as demonstrated
in section 8. The ratio of largest cell size to smallest cell size is roughly 2 for grids
of this form, which results in a much less stringent restriction on the time step than
would result from a polar grid, for example, where grid cells near the center are much
smaller than the average cell size (see Table 3.1).

The grid shown in Figure 3.1 has the interesting property that one set of cell
edges lies along concentric circles and the grid is similar to a polar coordinates grid
in this regard. However, note that each concentric circle of cells in the mapped grid
now corresponds to a concentric square in the computational domain rather than a
single grid line.

This grid is created by the following mapping, implemented in MATLAB in the
form needed for the clawpack software plotting routines. The function mapc2p.m
is used to map an arbitrary point (xc,yc) in the computational domain to the point
(xp,yp) in the physical domain.

function [xp,yp] = mapc2p(xc,yc)
r1 = 1; % map [-1,1] x [-1,1] to circle of radius r1
d = max(abs(xc),abs(yc));% value on diagonal of computational grid
r = sqrt(xc.ˆ2 + yc.ˆ2);
r = max(r, 1e-10); % to avoid divide by zero at origin
xp = r1 * d .* xc./r;
yp = r1 * d .* yc./r;
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Fig. 3.1 Rectangular computational grid (left) and the mapped quadrilateral grid in a circular do-
main (right). The same two rows of grid cells are shaded in each figure.

To quickly view this or other grids described in this paper in MATLAB, the
following commands can be used:

n = 40; % plots an n by n grid of quadrilateral cells
[xc,yc] = meshgrid(linspace(-1,1,n+1), linspace(-1,1,n+1));
[xp,yp] = mapc2p(xc,yc);
pcolor(xp,yp,0*yp); colormap([1 1 1]); daspect([1 1 1])

These and other MATLAB scripts in this paper may be found on the webpage
[14].

The “radial projection” mapping described above has the virtue of simplicity.
However, it gives rather skewed mesh cells along the diagonal and does not have
much flexibility. In section 3.2 we define a class of smoother maps that are generally
better to use in practice.

3.2. A Smoother Circle Mapping. A smoother and more flexible family of map-
pings can be defined by the following approach. As in the case of the radial pro-
jection mapping, the mapping is defined on each of the four sectors determined by
splitting the computational square on the two diagonals. Consider a computational
point (xc, yc) that satisfies xc > 0 and |yc| < xc ≡ d, for example, which lies in
the eastern sector. The vertical line segment between (d,−d) and (d, d) is mapped
to a circular arc of radius R(d) that passes through the points (D(d),−D(d)) and
(D(d), D(d)). The mapping is fully defined by the functions R(d) and D(d) as dis-
cussed further below. It is easy to compute that the center of this circle of radius
R(d) is at (x0, y0) = (D(d)−

√
R(d)2 −D(d)2, 0). The point (xc, yc) is then mapped

to

yp = ycD(d)/d,

xp = D(d)−
√

R(d)2 −D(d)2 +
√

R(d)2 − y2
p.

(3.1)

Similar mappings are used in the other four sectors; for example, points on the hor-
izontal line segment between (−d, d) and (d, d) are mapped to points on the circular
arc of radius R(d) passing through (−D(d), D(d)) and (D(d), D(d)).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

728 D. A. CALHOUN, C. HELZEL, AND R. J. LEVEQUE

The full mapping is specified in MATLAB as follows:
function [xp,yp] = mapc2p(xc,yc)
r1 = 1; % map [-1,1] x [-1,1] to circle of radius r1

d = max(abs(xc),abs(yc)); % value on diagonal of computational grid
d = max(d, 1e-10); % to avoid divide by zero at origin

D = r1 * d/sqrt(2); % mapping d to D(d) from (3.2)
R = r1 * d; % mapping d to R(d) from (3.2)

% R = r1 * ones(size(d)); % alternative for (3.3)

center = D - sqrt(R.ˆ2 - D.ˆ2);
xp = D./d .* abs(xc);
yp = D./d .* abs(yc);

ij = find(abs(yc)>=abs(xc));
yp(ij) = center(ij) + sqrt(R(ij).ˆ2 - xp(ij).ˆ2);
ij = find(abs(xc)>=abs(yc));
xp(ij) = center(ij) + sqrt(R(ij).ˆ2 - yp(ij).ˆ2);

xp = sign(xc) .* xp;
yp = sign(yc) .* yp;

The mapping is defined once the functions D(d) and R(d) for 0 ≤ d ≤ 1 are
determined. To map [−1, 1]× [−1, 1] to a circle of radius r1, we want R(1) = r1 and
the functionD(d) to be be monotonically increasing withD(0) = 0 andD(1) = r1/

√
2.

If R(d) varies too rapidly, then grid lines may cross, but various natural choices for
R(d) work well. One obvious choice is

(3.2) D(d) = r1d/
√
2, R(d) = r1d.

This maps concentric squares max(|xc|, |yc|) = d to concentric circles of radius R(d),
and is similar to the radial projection grid of section 3.1 in this respect, but is less
skewed along the axis. Figure 3.2(a) shows a portion of this grid (only the mapping
of the quadrant [0, 1] × [0, 1] is shown in this figure since the grid is symmetrically
reflected in the other quadrants). The fact that grid lines follow concentric circles
may be useful in modeling radially layered circles or cylinders in three dimensions.

It is possible to obtain a grid that is more nearly Cartesian near the center by
choosing R(d) to be bounded away from 0 as d→ 0. For example,

(3.3) D(d) = r1d/
√
2, R(d) ≡ r1

gives the grid of Figure 3.2(b), in which each line segment of concentric squares in
computational space is mapped to a circular arc with radius of curvature r1.

A nonlinear mapping D(d) can be used to redistribute points in the radial direc-
tion. For example,

(3.4) D(d) = r1d(2− d)/
√
2, R(d) ≡ r1

gives the mapping shown in Figure 3.2(c), which has grid cells clustered near the
boundary. This could be useful for solving problems with a boundary layer and will
also prove useful when extending this circle mapping to the surface of the sphere, as
is done in section 4.
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(a) (b)

(c) (d)

Fig. 3.2 Four grid mappings discussed in section 3.2. Only the positive quadrant is shown in each
case.

3.3. Interpolated Grids. There is another approach to obtaining a smoother grid
on the circle that is somewhat easier to implement than the above procedure, and
which also extends easily to mappings in the ball. Start with the radial projection
grid of section 3.1 and then use a convex combination of this grid and a pure Cartesian
grid, weighted entirely towards the Cartesian grid near the center and towards the
radial projection grid near the boundary. This can be accomplished by the following:

function [xp,yp] = mapc2p(xc,yc)
r1 = 1; % map [-1,1] x [-1,1] to circle of radius r1
d = max(abs(xc),abs(yc));
r = sqrt(xc.ˆ2 + yc.ˆ2);
r = max(r,1e-10);
xp = r1 * d .* xc./r;
yp = r1 * d .* yc./r;
w = d.ˆ2;
xp = w.*xp + (1-w).*xc/sqrt(2);
yp = w.*yp + (1-w).*yc/sqrt(2);

The weighting function is chosen to be w = d2, which seems to give a nice grid,
but other functions w(d) varying monotonically from 0 to 1 could be used. This
approach gives the grid shown in Figure 3.2(d).
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Table 3.1 The ratios of largest to smallest grid cells for the N × N circular disk grid mappings.
The ratios for the polar grid were computed analytically. The areas of cells in the ghost
cell region are not included for any grids.

Cell ratios on the disk

N Polar grid Radial proj. Constant curv. Convex combi.

100 199 1.979899 1.966483 3.117242
400 799 1.994994 1.991504 3.158103
1600 3199 1.998750 1.997869 3.168213

Table 3.1 gives the ratios of the largest to the smallest grid cell for several quadri-
lateral grids of the disk described above. For comparison we also give the ratios of
the polar grid.

4. Grids on the Surface of a Sphere. If the mapping of section 3.2 with the
choice (3.4) is used, then the grid shown in Figure 3.2(c) is obtained. If we now set

zp = sqrt(1 - (xp.ˆ2 + yp.ˆ2))

then the points (xp,yp,zp) lie on the upper hemisphere. We can apply a similar
mapping to points in the computational domain [−3,−1]× [−1, 1] to map these points
to the lower hemisphere. The two mappings together map the rectangle [−3, 1]×[−1, 1]
to the surface of the sphere. Figure 4.1(a) shows the resulting grid. This is easily
accomplished in MATLAB by

function [xp,yp] = mapc2p(xc,yc)
ijlower = find(xc<-1); % indices of points on lower hemisphere
xc(ijlower) = -2 - xc(ijlower); % flip across the line x = -1
% compute xp and yp by mapping [-1,1]x[-1,1] to the unit circle
% using the mapping of section 3.2 with (3.4)
zp = sqrt(1 - (xp.ˆ2 + yp.ˆ2));
zp(ijlower) = -zp(ijlower); % negate z in lower hemisphere

Proper communication of data between the hemispheres requires that periodic
boundary conditions be used in the x direction and that appropriate boundary condi-
tions be used along the top and bottom of the rectangular domain where the segment
−3 < x < −1 is connected to the segment −1 < x < 1 at the same boundary. These

(a) (b)

Fig. 4.1 (a) 40× 20 grid on the surface of the sphere. (b) 40× 20× 4 grid in a spherical shell.
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Table 4.1 The ratios of largest to smallest grid cells for the 2N ×N sphere mappings. The ratios
for the latitude-longitude grid were computed analytically.

Cell ratios on the sphere

N Latitude-longitude grid New grid

100 63.6567 1.659386
400 254.6466 1.676421
1600 1018.5913 1.680479

are easy to implement using the standard ghost cell technique, as described, for ex-
ample, in Chapter 7 of [36] (and are implemented in the source code for the example
of section 8.6).

Table 4.1 gives the cell-size ratios for the new sphere grid and the latitude-
longitude grid.

5. Hexahedral Grids in Three Dimensions. The mappings described in the
previous sections can be extended to a variety of geometries in three space dimensions,
including spherical shells, the full sphere, and cylinders or tori.

5.1. Spherical Shells. The two-dimensional grid on the surface of a sphere that
was described in section 4 can be extended radially outwards some distance orthogonal
to the surface, yielding a three-dimensional grid that occupies [−3, 1]× [−1, 1]× [0, 1]
in computational space and maps to the spherical shell between radii r1 and r2, as
shown in Figure 4.1(b). This can be accomplished by a three-dimensional mapc2p
function of the form

function [xp,yp,zp] = mapc2p(xc,yc,zc)
% map [-3,1]x[-1,1]x[0,1] to a spherical shell r1 <= r <= r1+dr
r1 = 1; dr = 0.5;
ijlower = find(xc<-1); % indices of points on lower hemisphere
xc(ijlower) = -2 - xc(ijlower); % flip across the line x = -1
% compute xp and yp by mapping [-1,1]x[-1,1] to unit circle using
% the mapping of section 3.2 with (3.4)
zp = sqrt(1 - (xp.ˆ2 + yp.ˆ2));
zp(ijlower) = -zp(ijlower); % negate z in lower hemisphere
Rz = r1 + zc*dr; % radius based on zc
xp = Rz.*xp;
yp = Rz.*yp;
zp = Rz.*zp;

This might be useful for problems in atmospheric flow, for example, or for elas-
todynamics in spherical shells.

5.2. Hexahedral Grids in the Ball. The spherical shell grid of the previous sec-
tion could be used for a solid spherical ball by taking the inner radius to be r1=0.
In this case all the grid lines in the zc direction meet at the origin and this grid has
similar problems at the origin as the standard spherical polar coordinates.

Alternatively, we can construct mappings that are three-dimensional generaliza-
tions of the circle mappings considered in section 3. The two-dimensional radial
projection circle mapping of section 3.1 is easily extended to map the computational
cube [−1, 1]× [−1, 1]× [−1, 1] to a ball:

function [xp,yp,zp] = mapc2p(xc,yc,zc)
r1 = 1; % map [-1,1] x [-1,1] x [-1,1] to sphere of radius r1
d = max(max(abs(xc),abs(yc)),abs(zc));



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

732 D. A. CALHOUN, C. HELZEL, AND R. J. LEVEQUE

(a)

(b) (c)

Fig. 5.1 Hexahedral grid in a ball. (a) Mapping of the outer edges of the computational cube. (b)
Cut-away view of one quarter of ball. (c) Cut-away view when convex combination with
Cartesian grid is applied.

r = sqrt(xc.ˆ2 + yc.ˆ2 + zc.ˆ2);
r = max(r,1e-10);
xp = r1 * d .* xc./r;
yp = r1 * d .* yc./r;
zp = r1 * d .* zc./r;

Figure 5.1(a) shows the surface of the resulting hexahedral grid. Note that on the
surface this mapping looks like the cubed sphere surface grid described in section 2,
but these are now faces of hexahedra in the ball. Figure 5.1(b) shows a cut-away view,
obtained by mapping [0, 1]× [0, 1]× [−1, 1] to a quarter of the ball. Concentric cubes
in computational space are mapped to concentric spheres in physical space, which
may be useful in solving problems in a layered sphere, e.g., in global seismology.

As in the case of the circle, this mapping can be smoothed out by taking a convex
combination with a Cartesian grid as described at the end of section 3.2. To the above
function add the lines

w = d.ˆ2;
xp = w.*xp + (1-w).*xc/sqrt(3);
yp = w.*yp + (1-w).*yc/sqrt(3);
zp = w.*zp + (1-w).*zc/sqrt(3);

Figure 5.1(c) shows a cut-away view of the resulting hexahedral grid.
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Fig. 6.1 A quadrilateral grid for a square domain with two circular inclusions.

6. Circular Inclusions in Rectangular Grids. For problems in more complicated
geometry it may be useful to have a quadrilateral grid that meshes a square domain
containing a circular inclusion.

Suppose we wish to map the computational unit square to a square domain
[−r2, r2] × [−r2, r2] with an embedded circle of radius r1 < r2. The following D(r)
and R(r) functions have been found to give a family of smooth mappings that work
over a fairly wide range of r1/r2:

(6.1) D(d) = r1d/
√
2, R(d) =

{
r1 if d ≤ r1/r2,

r1

(
1−r1/r2

1−d

)r2/r1+1/2
if d > r1/r2.

Outside the circular inclusion the grid lines are mapped to circles of radius R(d)→∞
as d→ 1. Other choices of R(d) for d < r1/r2 can be used as discussed in section 3.2
to give different mappings within the embedded circles. For example, R(d) = r2d/

√
2

produces concentric circular grid lines in the embedded circles. This may be useful for
modeling hollow cylinders or other radially laminated materials in a square domain.
Smooth inclusions with shapes other than circular can be incorporated by composing
a further mapping as discussed in section 8.3.

Domains with several inclusions can be handled by piecing together several grids
of the above form. Figure 6.1 shows an example. See section 8.4 for some numerical
results on this grid. This idea can also be extended to the three-dimensional case,
where a ball might be embedded in a Cartesian grid.

7. Finite Volume Methods on Mapped Grids. In order to discretize PDEs on
mapped grids one can either transform the equations into equations in computational
coordinates and discretize the transformed equations or one can discretize directly in
physical space and work with reference to a Cartesian frame. We have found that the
latter approach works well for the approximation of hyperbolic problems on the kind
of grids considered in this paper; see section 7.1 for a description of the algorithm.
In order to approximate diffusion processes we instead discretize the transformed
equations; see section 7.2.
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7.1. The Wave-Propagation Algorithm for Hyperbolic Equations. Here we
will briefly review the discretization of hyperbolic problems on mapped grids using
the wave-propagation algorithm; see Chapter 23 of [36] for more details.

We consider systems of conservation laws, i.e., first order PDEs in divergence
form,

(7.1) ∂tq +∇ · f(q) = 0,

with suitable initial conditions for q. Here q is a vector of conserved quantities that
maps from X × [0,∞) to U , where X and U are open subsets of Rd (i.e., the physical
space) and Rm (i.e., the state space), respectively. The matrix f is a flux matrix that
maps from U to Rm×d and

∇ · f(q) =
d∑
i=1

∂xifi(q) =
d∑
i=1

Ai(q)∂xiq,

where fi is the ith column of the flux matrix f and Ai is the Jacobian matrix of fi
with respect to q. We can rewrite (7.1) in the more general quasi-linear form

(7.2) ∂tq +
d∑
i=1

Ai(q)∂xiq = 0.

The system is called hyperbolic if any linear combination of the flux Jacobian matrices
is diagonalizable with real eigenvalues. The eigenvalues describe wave speeds and the
eigenvectors lead to a decomposition of the conserved quantities into waves.

A finite volume method can be applied on any control volume C using the integral
form of the conservation law

d

dt

∫
C

q dx = −
∫
∂C

f(q) · n ds,

where n is the outward-pointing unit normal vector at the boundary ∂C and f · n is
the flux normal to the boundary. This leads to a finite volume method of the form

Qn+1 = Qn − ∆t

|C|

N∑
j=1

hjF̆
n
j ,

where F̆nj represents a numerical approximation to the average normal flux across the
jth side of the grid cell, N is the number of sides, and hj is the length of the jth side
(in two dimensions) or the area of the cell interface (in three dimensions) measured in
physical space. We could now apply any unstructured grid method (see, for instance,
[29]) to approximate hyperbolic problems on the grids discussed in this paper.

In the following we will, however, make use of the fact that our mapped grids
are logically rectangular and we will restrict our consideration to the two-dimensional
case (d = 2), i.e., the physical space could be the circle or the star shaped domain
of Figure 8.4. The computational space is a square. In section 8.6, we show how the
method can be used to approximate hyperbolic equations on the sphere. Furthermore,
the method has been implemented in the three-dimensional case; see section 8.2 for
calculations in a ball.

On a curvilinear grid, the finite volume method can be written in the form

(7.3) Qn+1
ij = Qn

ij −
∆t

κij∆xc

(
Fi+ 1

2 ,j
− Fi− 1

2 ,j

)
− ∆t

κij∆yc

(
Gi,j+ 1

2
−Gi,j− 1

2

)
,
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where ∆xc, ∆yc denote the equidistant discretization of the computational domain,
κij = |Cij |/∆xc∆yc is the area ratio between the area of the grid cell in physical
space and the area of a computational grid cell, and

Fi− 1
2 ,j

= γi− 1
2 ,j

F̆i− 1
2 ,j

,

Gi,j− 1
2
= γi,j− 1

2
F̆i,j− 1

2

(7.4)

are fluxes per unit length in computational space. Here the length ratios are defined
as γi− 1

2 ,j
= hi− 1

2 ,j
/∆yc and γi,j− 1

2
= hi,j− 1

2
/∆xc.

Approximations to the intercell fluxes are obtained by solving Riemann problems
for a one-dimensional system of equations normal to the interface. For an isotropic
system of equations such as the Euler, shallow water, or acoustics equations, the
flux F̆ at a grid cell interface can be calculated by first rotating the velocity com-
ponents of the cell average values of the quantity q on both sides of the interface
into the direction normal and tangential to the interface. With these modified data,
a one-dimensional Riemann problem is solved and a flux is calculated. Finally the
momentum components of the flux are rotated back to obtain the flux in physical
space.

To be more specific, we now consider the grid cell interface (i− 1
2 , j) between the

cells (i− 1, j) and (i, j). Let ni− 1
2 ,j

= (n1, n2) and ti− 1
2 ,j

= (t1, t2) be the normalized
normal and tangential vectors to this cell interface. Then the rotation matrix which
rotates the velocity components (e.g., for the shallow water or the acoustics equation)
has the form

Ri− 1
2 ,j

=


 1 0 0

0 n1 n2

0 t1 t2


 .

The wave-propagation algorithm consists of the following steps:
1. Determine Q+•

i−1,j and Q−•i,j by rotating the velocity components, i.e.,

Q+•
i−1,j = Ri− 1

2 ,j
Qi−1,j , Q−•i,j = Ri− 1

2 ,j
Qi,j .

Later we will also use the notation Q•−i,j = Ri,j− 1
2
Qi,j and Q•+i,j = Ri,j+ 1

2
Qi,j .

2. Solve the Riemann problem for the one-dimensional conservation law

∂tq +∇ · f1 = 0

with initial values

q(x, 0) =

{
Q+•
i−1,j : x < xi− 1

2
,

Q−•i,j : x ≥ xi− 1
2
.

This results in waves W̆p

i− 1
2 ,j

that are moving with speeds s̆p
i− 1

2 ,j
, p = 1, . . . ,

Mw, where Mw is the number of waves; see [36] for details.
The waves lead to a decomposition of the jump in the conserved quantities,
i.e.,

Q−•ij −Q+•
i−1,j =

Mw∑
p=1

W̆p

i− 1
2 ,j

.
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The solution of the Riemann problem at the interface can be expressed in the
form

Q̆∗i− 1
2 ,j

= Q+•
i−1,j +

∑
p:sp<0

W̆p

i− 1
2 ,j

.

3. Define (in analogy to (7.4)) scaled speeds

sp
i− 1

2 ,j
= γi− 1

2 ,j
s̆p
i− 1

2 ,j

and rotate waves back to Cartesian coordinates by

W p

i− 1
2 ,j

= RTi− 1
2 ,j

W̆ p

i− 1
2 ,j

, p = 1, . . . ,Mw.

4. The waves and associated speeds are used to calculate left- and right-moving
fluctuations in the form

A±∆Qi− 1
2 ,j

=
Mw∑
p=1

(sp
i− 1

2 ,j
)±Wp

i− 1
2 ,j

,

with (sp
i− 1

2 ,j
)+ = max(sp

i− 1
2 ,j

, 0) and (sp
i− 1

2 ,j
)− = min(sp

i− 1
2 ,j

, 0).
An alternative description of the fluctuations is given by

A+∆Qi− 1
2 ,j

= fi− 1
2 ,j

(Q−•i,j )− f∗i− 1
2 ,j

,

A−∆Qi− 1
2 ,j

= f∗i− 1
2 ,j
− fi− 1

2 ,j
(Q+•

i−1,j),

where fi− 1
2 ,j

(·) = γi− 1
2 ,j

RT
i− 1

2 ,j
f1(·) and f∗

i− 1
2 ,j

= fi− 1
2 ,j

(Q̆∗
i− 1

2 ,j
).

5. In an analogous way, up- and down-moving fluctuations B∆Q±
i,j− 1

2
at the

interface (i, j − 1
2 ) are calculated.

Using these fluctuations, a Godunov-type finite volume method can be defined
that calculates the cell average of the conserved quantities at the next time step
by adding to the cell average of the conserved quantities at the previous time the
contribution of all waves that are moving into the grid cell, i.e.,
(7.5)

Qn+1
ij = Qn

ij−
∆t

κij∆xc

(
A+∆Qi− 1

2 ,j
+A−∆Qi+ 1

2 ,j

)
− ∆t

κij∆yc

(
B+∆Qi,j− 1

2
+ B−∆Qi,j+ 1

2

)
.

The speeds and limited versions of the waves are used to calculate second order
correction terms. These terms are added to the update (7.5) in flux difference form.
At the interface (i− 1

2 , j) the correction flux has the form

(7.6) F̃i− 1
2 ,j

=
1
2

Mw∑
p=1

|sp
i− 1

2 ,j
|
(
1− ∆t

κi− 1
2 ,j

∆xc
|sp
i− 1

2 ,j
|
)
|sp
i− 1

2 ,j
|W̃p

i− 1
2 ,j

,

where κi− 1
2 ,j

= (κi−1,j + κij)/2. To avoid oscillations near shock waves and contact
discontinuities, a wave limiter is applied leading to limited waves W̃p.

Furthermore, a transverse wave propagation is included as part of the second
order correction terms. The left-going and right-going fluctuations are each split into
two transverse fluctuations (up-going and down-going); see [36].
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One advantage of the wave-propagation algorithm over other finite volume meth-
ods is that it can also be applied to hyperbolic problems in variable-coefficient quasi-
linear form. A possible example is acoustics in heterogeneous media, which is consid-
ered in section 8.4. However, if applied to equations in divergence form, it is required
that the method leads to a conservative approximation. To show that the method is
conservative, we multiply (7.5) by κij and sum over all grid cells:

(7.7)
l∑
i=1

m∑
j=1

κi,jQ
n+1
i,j =

∑
i,j

κi,jQ
n
i,j

− ∆t

∆xc


∑

j

A+∆Q 1
2 ,j

+
∑
j

l∑
i=2

(
A−∆Qi− 1

2 ,j
+A+∆Qi− 1

2 ,j

)
+
∑
j

A−∆Ql+ 1
2 ,j




− ∆t

∆yc


∑

i

B+∆Qi, 12
+
∑
i

m∑
j=2

(
B−∆Qi,j− 1

2
+ B+∆Qi,j− 1

2

)
+
∑
i

B−∆Qi,m+ 1
2




=
∑
i,j

κi,jQ
n
ij −

∑
j

∆t

∆xc

(
f∗l+ 1

2 ,j
− f∗1

2 ,j

)
−
∑
i

∆t

∆yc

(
f∗i,m+ 1

2
− f∗i, 12

)

−
∑
i,j

(
∆t

∆xc

(
fi− 1

2 ,j
(Q−•i,j )− fi+ 1

2 ,j
(Q+•

i,j )
)
− ∆t

∆yc

(
fi,j− 1

2
(Q•−i,j )− fi,j+ 1

2
(Q•+i,j )

))
.

We will now show that the final sum is zero. For this we multiply by ∆xc∆yc/∆t and
rewrite each term as

∆yc

(
fi− 1

2 ,j
(Q−•i,j )− fi+ 1

2 ,j
(Q+•

i,j )
)
−∆yc

(
fi,j− 1

2
(Q•−i,j )− fi,j+ 1

2
(Q•+i,j )

)
= hi− 1

2 ,j
RTi− 1

2 ,j
f1(Ri− 1

2 ,j
Qn
ij)− hi+ 1

2 ,j
RTi+ 1

2 ,j
f1(Ri+ 1

2 ,j
Qi,j)

+ hi,j− 1
2
RTi,j− 1

2
f1(Ri,j− 1

2
Qi,j)− hi,j+ 1

2
RTi,j+ 1

2
f1(Ri,j+ 1

2
Qi,j).

(7.8)

The rotational invariance of the equations implies

RT f1(Rq) = n1f1(q) + n2f2(q).

Using this, the right hand side of (7.8) can be written as(
hi− 1

2 ,j
n1
i− 1

2 ,j
− hi+ 1

2 ,j
n1
i+ 1

2 ,j
+ hi,j− 1

2
n1
i,j− 1

2
− hi,j+ 1

2
n1
i,j+ 1

2

)
f1(Qi,j)

+
(
hi− 1

2 ,j
n2
i− 1

2 ,j
− hi+ 1

2 ,j
n2
i+ 1

2 ,j
+ hi,j− 1

2
n2
i,j− 1

2
− hi,j+ 1

2
n2
i,j+ 1

2

)
f2(Qi,j).

(7.9)

The divergence theorem over quadrilateral grid cells ensures that each of these terms
is zero, and hence the scheme is conservative, up to fluxes at the boundary described
by (7.7).

The three-dimensional wave-propagation algorithm is the natural extension of
that for two dimensions, and is described in detail in [30]. The curvilinear grid algo-
rithm is also the natural extension of the two-dimensional method presented above.
Just as in two dimensions, where we approximate curvilinear grid cells as quadrilater-
als, in three dimensions we approximate the general hexahedral grid cell as a cell with
ruled surfaces. This approximation greatly simplifies the task of computing metric
terms such as the area of faces, volumes of mesh cells, and the rotation matrix.
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7.2. Discretization of Diffusion Terms. For balance laws that also include diffu-
sion and/or reaction terms in addition to transport terms, we typically use a fractional
step method; see [36]. Reaction terms can then easily be included by using an ODE
solver. If diffusion terms are present, a heat equation is solved during each time step
of the fractional step method. The time step will typically be determined by the
CFL condition for the explicit update of the transport part of the equations. On
our mapped grids we have approximated the solution of the heat equation using a
discretization of the equation in computational space, i.e., we discretize
(7.10)√

|h|∂tq = ∂xc

(√
|h|
(
h11∂xcq + h12∂ycq

))
+ ∂yc

(√
|h|
(
h21∂xcq + h22∂ycq

))
.

Here |h| is the determinant of the metric tensor h = JTJ , where J is the Jacobian
matrix of the grid transformation. Note that

√
|h| is now the ratio of volume elements

in the two coordinate systems and hαβ denotes the components of h−1, the inverse of
the matrix h. (Subscripts on h below refer to the grid point location.)

Equation (7.10) can be discretized in the form of a finite volume method (7.3),
with κij =

√
|hij | and numerical fluxes

(7.11)

Fi+ 1
2 ,j

= −
√
|hi+ 1

2 ,j
|
(
h11
i+ 1

2 ,j

Qi+1,j−Qij

∆xc
+ h12

i+ 1
2 ,j

Qi,j+1+Qi+1,j+1−Qi,j−1−Qi+1,j−1

4∆yc

)

and an analogous definition of the G terms. Analytical formulas for the metric terms
of the sphere grid shown in Figure 4.1(a) have been implemented and were used for
the calculations shown in section 8.7. For the time discretization we used the RKC-
method, an explicit solver for parabolic PDEs; see [46]. It is a variable time step and
variable formula method (based on a family of Runge–Kutta–Chebyshev formulas)
that allows the use of reasonable time steps.

8. Numerical Results. In the remainder of the paper we show some computa-
tional results, mostly for hyperbolic problems using the clawpack software.

8.1. Blast Wave in Radial Geometry. We first test the two-dimensional grids
described in section 3 to determine how well our proposed grids work for solving the
Euler equations. In particular, we wish to determine whether the skewed cells along
the diagonals of these grids have a noticeable effect on the quality of the solution. For
this test case, we consider two grids, the radial projection grid and the grid consisting
of the convex combination of the radial grid and the Cartesian grid. We refer to these
grids as the “radial” grid and the “convex” grid, respectively.

The Euler equations for a compressible polytropic gas are given in standard con-
servation form (7.1) with

(8.1) q =




ρ
ρu
ρv
ρw
E


 , f(q) =




ρu ρv ρw
ρu2 + p ρvu ρwu
ρuv ρv2 + p ρwv
ρuw ρvw ρw2 + p

u(E + p) v(E + p) w(E + p)


 .

The conserved quantities are the density ρ, momentum ρ ·u = (ρu, ρv, ρw), and total
energy E. In addition to these equations, we must supply an equation of state that
relates the pressure p to the conserved quantities. For the polytropic gas, the equation
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Fig. 8.1 Scatter plots showing density and pressure as functions of r, the distance from the center
of the circle. The top row of plots shows results computed on the radial projection grid,
and the bottom row shows results for the smoother convex grid. Each grid is 150 × 300.
The data for all plots were taken at time t = 0.6.

of state is given by

(8.2) E =
p

γ − 1
+

1
2
ρ(u2 + v2 + w2),

where γ is the adiabatic gas constant. We use the value for air and set γ = 1.4.
For the present two-dimensional problem, we solve the two-dimensional analogue

of the equations given above. These equations can be obtained by setting w = 0. The
problem is initialized with radially symmetric data. Initially ρ = 1 and u = v = 0
everywhere in the domain. Inside a disk of radius 0.2 centered at x = y = 0 we set
p = 5. Outside this disk, we set p = 1. We only compute the solution in the half circle
in the right half plane of the Cartesian plane, and use symmetry conditions at x = 0
to simulate the effect of the solution in the full domain. The grid size is 150 × 300.
At the physical boundaries on the outer edge of the circle, we impose reflecting, or
solid wall, boundary conditions.

We ran the computation long enough to get reflections off the circular outer
boundary. In Figure 8.1 we show scatter plots of the computed pressure and density
at t = 0.6. The density plots clearly show the contact discontinuity near r = 0.3
and the shock near r = 0.9, which has already reflected off the outer boundary and
is in-going at this time. As expected, the pressure is smooth near r = 0.3, but also
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Convex gridRadial grid

t =  0.60

Fig. 8.2 Contour plot of the density on each grid. The contour lines are drawn at 31 equally spaced
values between 0.3 and 1.3.

exhibits a discontinuity near r = 0.9. The solutions on both grids look quite good and
suggest that even on this relatively coarse grid, we can get good results with these
grids.

Looking at the scatter plots more closely, it appears that the radial grid solutions
seem to have fewer data points than the convex grid calculations, especially at the
outer shock. This is due to the fact that on the radial grid, one set of coordinate
directions lies along concentric circles, and therefore there are fewer distinct values
of r at cell centers. On the smoother convex grid, the data points appear more filled
in. Also, the convex grid seems to resolve the contact discontinuity slightly better
than the radial grid approximation. Finally, the pressure pulse at about r = 0.2 is
also slightly sharper on the convex grid. This may be due to the fact that, again, the
convex grid has data at more distinct r values, and so a wider range of solution values
in r is obtained.

In Figure 8.2, we show a contour plot of the density on each grid. The left half
disk shows the solution computed on the radial grid, and the right shows the solution
on the convex grid. Here, we see more clearly that the highly skewed cells along the
diagonal of the radial grid have a noticeable effect on the solution there. The convex
grid produces much smoother results along the diagonals, although, on this grid, the
contour lines are slightly compressed along the 45 degree lines.

8.2. Spherical Blast Wave. We now use the three-dimensional grid of Fig-
ure 5.1(b) to solve the Euler equations for a blast wave problem inside a ball.

We initialize the problem with axisymmetric data, similar to that used for the two-
dimensional problem. Inside a sphere of radius 0.2 centered at x = y = 0, z = −0.4,
we set the pressure p to 5. Note that this sphere is offset from the center of the ball
domain, leading to a more interesting solution than the radially symmetric solution
of the previous example. Outside this sphere, we set the pressure to 1. Density is
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set to 1 everywhere initially and velocity is set to 0. This is the spherical analogue
of the test problem used in section 3.2 of [30], where a spherical blast wave between
two parallel walls is used as a test problem of the three-dimensional implementation
of clawpack. We compute the solution in a quarter sphere on a 75 × 75 × 150
grid. At each boundary of the computational domain, we impose solid wall boundary
conditions. These conditions serve as both symmetry conditions at interior boundaries
(i.e., boundaries on the x and y planes bounding the quarter sphere) and as solid wall
boundary conditions on the exterior of the sphere.

We compare the three-dimensional calculations with solutions in a two-dimensional
disk using the two-dimensional Euler equations with a source that models the ax-
isymmetry. The two-dimensional reference solution is again calculated in only half
the domain using solid wall boundary conditions at the axis of symmetry as well as
at the physical boundary, using the convex grid with 300× 600 mesh cells.

Figure 8.3 shows a single slice of the three-dimensional computed solution along-
side the fine grid two-dimensional solution. The main features of the expanding shock
wave are visible in both sets of plots. These features include an expanding shockwave
(the outermost expanding circle) and the essentially stationary contact discontinuity
between different values of density (the innermost ring). Good agreement is seen
between the three-dimensional computations and the fine grid axisymmetric results.
The only obvious difference is due to the fact that the three-dimensional computation
is computed at a lower resolution, and so the shock fronts and contact discontinuities
are more diffuse.

8.3. Quadrilateral Grids on Other Smooth Domains. Figure 8.4(a) shows a
quadrilateral grid on a noncircular domain with a smooth boundary, obtained by
composing the radial projection circle map from section 3.1 with a smooth map from
the circle to this starlike domain. The mapping is given by using the mapc2p.m
function of section 3.1 appended with the transformation

theta = atan(abs(yp) ./ max(abs(xp),1e-10));
r = 1 + .2*cos(6*theta);
xp = xp.*r;
yp = yp.*r;

Note that this gives a radial projection to the modified domain. Alternatively,
any of the mappings defined in section 3.2 could be appended with these lines to
obtain a smoother mapping, or a convex combination of the radial projection grid
with a Cartesian grid can be used to smooth the mapping towards Cartesian in the
center, as described at the end of section 3.2 and shown in Figure 8.4(b).

Figure 8.5 shows solutions of the shallow water equations solved on a 200 × 200
version of the grid shown in Figure 8.4 (b). The shallow water equations can be written
in the form (7.1) with a flux matrix that consists of the upper left 2 × 3 submatrix
of (8.4). The initial conditions consist of deeper water in a circular region near the
center, so it is a radial dam-break problem. Solid wall boundary conditions are used
so that we are simulating the resulting sloshing of water in a tank with irregular
shape. Notice that the computed solution shows the expected 6-fold symmetry to
a remarkable degree in spite of the fact that the grid does not have this symmetry
and is more highly skewed in some arms than in others. Calculations on the grid of
Figure 8.4(a) have also been performed and gave roughly comparable results which
are not shown here.

8.4. Acoustics in a Heterogeneous Medium. The acoustics equations are an
example of a linear hyperbolic system in nonconservative form where the wave-
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Fig. 8.3 Contour plots of density computed for the blast wave problem on the three-dimensional ra-
dial projection grid (left half of each plot) and a two-dimensional axisymmetric calculation
(right half of each plot). The three-dimensional grid is 75×75×150 and the two-dimensional
grid is 300× 600.
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(a) (b)

Fig. 8.4 Quadrilateral grid on a starlike domain using 40× 40 grid cells. (a) The radial projection
grid; (b) followed by interpolation smoothing as described in section 3.3.

propagation algorithm can be applied naturally. In two space dimensions the equa-
tions can be written in the form

∂tq + A(x, y)∂xq + B(x, y)∂yq = 0,

with

q =


 p

u
v


 , A(x, y) =


 0 K(x, y) 0

1/ρ(x, y) 0 0
0 0 0


 ,

B(x, y) =


 0 0 K(x, y)

0 0 0
1/ρ(x, y) 0 0


 ,

where p, u, v are pressure and velocity in the x and the y direction, respectively, ρ
is the density, and K is the bulk modulus. Furthermore, the sound speed and the
impedance of the material are defined as c =

√
K/ρ and Z = ρc (see [36]).

We solve the acoustics equations on a grid of the form shown in Figure 6.1. The
two circles represent cylinders made out of a different material than the background
and we consider a plane wave approaching from the left, a square pulse of high pressure
generated by setting the velocity of the wall at the left of the domain to be s = 1
for t ≤ 0.05 and s = 0 beyond this time. The other three sides of the domain have
zero-order extrapolation nonreflecting boundary conditions.

The medium is defined by

background: Z = 1, c = 1,
circle 1: Z = 12, c = 0.3, (x0, y0) = (0.45, 0.3), r1 = 0.15, r2 = 0.204,
circle 2: Z = 10, c = 1.5, (x0, y0) = (0.7, 0.75), r1 = 0.15, r2 = 0.204.

Computed results on a 200×200 grid at three different times are shown in Figure 8.6,
along with adaptive mesh refinement results with higher resolution.

8.5. Adaptive Mesh Refinement. One advantage of using a single logically rect-
angular grid for the computational domain is that it is relatively easy to apply adap-
tive mesh refinement algorithms of the style pioneered by Berger, Oliger, and Colella
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Fig. 8.5 Computed solution of the two-dimensional shallow water equations on a 200× 200 version
of the grid shown in Figure 8.4(b) and with solid wall boundary conditions. The initial
data is a circular region, where h = 1.5, while h = 1 elsewhere. The computed solutions at
six selected times are shown. Contour values are at 0.505:0.01:1.5.
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Fig. 8.6 Acoustics in a heterogeneous medium. The material parameters and sound speed are dif-
ferent in each of the circular regions and a square pulse is propagating from left to right.
Left column: Solution at three different times on a 200 × 200 grid. Right column: Using
adaptive mesh refinement on rectangular patches (see section 8.5). Grid lines are shown
on the two coarsest levels, not on the third level where the effective resolution is 800× 800.
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[8, 10, 7], in which a rectangular grid is refined on rectangular patches, recursively to
several levels. In particular, when solving hyperbolic problems using wave-propagation
algorithms, the adaptive mesh refinement routines of amrclaw, which are included
with clawpack, can be applied directly with little additional work on the part of
the user. The approach used for wave-propagation algorithms is described in [10]
and the software is documented in [34]. Figure 8.6 shows three frames from a sample
calculation where the acoustics problem with inclusions from section 8.4 are solved
with three levels. The coarsest grid is 40× 40, the level 2 grids are refined by a factor
of 2 in both space and time, and the finest level 3 grids are refined by an additional
factor of 10 in space and time, giving resolution comparable to a uniform 800 × 800
grid.

8.6. Shallow Water on the Sphere. The shallow water equations are often
solved on a sphere in global atmosphere or ocean models, for example. The equa-
tions can be formulated in three-dimensional Cartesian coordinates as

(8.3) ∂tq +∇ · f(q) = s(x,q),

where q = (h, hu, hv, hw)T represents the state vector composed of the height h and
three Cartesian velocity components u = (u, v, w)T , all of which are functions of space
and time. The flux matrix has the form

(8.4) f(q) =




hu hv hw
hu2 + 1

2gh
2 huv huw

huv hv2 + 1
2gh

2 hvw
huw hvw hw2 + 1

2gh
2


 .

The source term, s(x,q), which acts only on the momentum equations, has the form

(8.5) s(x,q) = −2Ω
a

z (x× hu) +
(
x · (∇ · f̃)

)
x.

The first term on the right-hand side of (8.5) is the Coriolis force due to the rotation of
the earth. Here Ω and a are the rotation rate and the radius of the earth, respectively.
The second term in (8.5) is a forcing term which guarantees that the fluid velocity
remains on the surface of the sphere, i.e., perpendicular to the position vector x =
(x, y, z) on the sphere. Here f̃ consists of the part of the flux matrix that is associated
with the momentum equations. Such a Cartesian form of the equations was also used
in [18], [21], [22], [23].

We approximate (8.3) using an operator splitting approach, i.e., Strang split-
ting. The Cartesian form has the advantage that it is independent of the coordinate
transformation being used. The approximation of the three-dimensional equations
is restricted to the surface of the sphere, i.e., we only update q in grid cells on the
sphere. Our discretization follows the general outline from section 7.1. In a first step
the velocity components of the grid cell values on each side of an interface are ro-
tated into the direction normal (n) and tangential (t) to the interface in the tangent
plane; now n, t ∈ R3. Then a one-dimensional Riemann problem is solved and the
momentum components of the flux are rotated back to Cartesian coordinates. Dur-
ing each time step the momentum components are projected to the tangent plane at
each cell center. Furthermore, the Coriolis force is calculated using a higher order
Runge–Kutta method.
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Fig. 8.7 Shallow water equations on the surface of the sphere with initial data consisting of a hump
of fluid. Contours of the fluid depth h are shown computed on a 400× 200 grid of the type
shown in Figure 4.1(a). The top two figures (times t = 0 and 0.6) are viewed from above.
The bottom two figures (times t = 1.8 and 2.0) are viewed from below.

Note that on the sphere the term stated in (7.9) is in general not equal to zero.
In order to obtain a conservative update, we thus subtract in each grid cell during
each time step the term
(8.6)

Qcor
i,j =

∆t

κij∆xc∆yc

(
hi− 1

2 ,j
ni− 1

2 ,j
− hi+ 1

2 ,j
ni+ 1

2 ,j
+ hi,j− 1

2
ni,j− 1

2
− hi,j+ 1

2
ni,j+ 1

2

)
·f(Qij)

from the cell average value of q.
We first consider an example on a nonrotating sphere similar to one from [43].

The initial data consist of stationary fluid (zero velocities) with initial depth

(8.7) h(x, y, z) = 1 + 2 exp
(
−40(1− (a1x+ a2y + a3z))2

)
,

where (x, y, z) is a point on the unit sphere and (a1, a2, a3) is a unit vector determining
an axis of symmetry. In this example we set the gravitational constant g equal to
one. This gives a smooth hump of fluid centered about the point (a1, a2, a3) and
the solution remains axisymmetric about the ray through this point. A reference
solution for comparison can then be obtained by solving a one-dimensional shallow
water equation with a source term for the axisymmetric solution as a function of
s = sin(a1x+ a2y + a3z), the “latitude” relative to the axis of symmetry.

Figure 8.7 shows the initial data and solution at three later times as a contour
plot of h on the sphere. By time t = 0.6 a shock has formed and at time t = 1.8
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Fig. 8.8 Shallow water equations on the surface of the sphere. Scatter plots of solution vs. s, the
latitude relative to the axis of symmetry, shown at two times corresponding to the bottom
two figures of Figure 8.7 but on a coarser grid with 100 × 50 grid cells. The solid line is
the one-dimensional axisymmetric reference solution computed on a fine grid (500 points).

this shock has just passed through the antipode of the initial hump location (which
is taken off center from the north pole to better test the behavior near the equator,
where the highly nonorthogonal grid points lie). For the latter two times, a scatter
plot of the numerical solution at all points on the sphere vs. the corresponding s value
is compared with the one-dimensional reference solution in Figure 8.8.

There is very little scatter in the scatter plots, indicating that there are few grid
effects, and the solution is quite good even in the nearly triangular cells near the
equator. In [12], we present results for this test case using adaptive mesh refinement.
These can also be found on the webpage for this paper [14], along with animations of
the evolution of the solution and the grids.

Rossby–Haurwitz Test Problem. In our next example we consider approxima-
tions of a wave number 4 Rossby–Haurwitz pattern. This is a standard test problem
for the shallow water equations on a rotating sphere. We refer to Williamson et al.
[49, Problem 6] for a detailed description of the initial conditions. For our simulations
we have set the characteristic time scale to one day and the characteristic length scale
to the radius of the earth.

Haurwitz [24] showed that in a nondivergent barotropic atmosphere (modeled by
the nonlinear barotropic vorticity equation on the sphere), the flow pattern moves from
west to east with constant angular velocity and without change of shape. Although
Rossby–Haurwitz waves are not analytical solutions of the shallow water equations,
the wave structure is rotated about the z-axis for a long time. For even longer time
scales (about 100–150 days), highly resolved numerical simulations (see [47], [43])
show that the symmetric wave structure breaks.

In Figure 8.9 we show contour lines of the height obtained on a grid with 400×200
grid cells at different times. Our results compare well with results obtained on other
(smoother) grids; see, for instance, [21] or [43]. In particular we do not observe any
grid effects.

For early times, i.e., t = 1–4 days, we calculated the experimental order of con-
vergence (EOC) by comparing solutions on three grids with 100× 50, 200× 100, and
400 × 200 grid cells. The results of this convergence study are reported in Table 8.1
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Fig. 8.9 Contour levels of the fluid height h between 8100m and 10500m in increments of 120m. The
Rossby–Haurwitz wave was computed on a 400×200 grid of the type shown in Figure 4.1(a).
The top two figures show the solution at times t = 0 and t = 3 days and the bottom two
figures at times t = 7 days and t = 14 days.

Table 8.1 Convergence study for the Rossby–Haurwitz wave using three grids with 100× 50, 200×
100, and 400×200 grid cells and CFL ≤ 0.9. The table shows the EOC in all components
of q at different times.

1 day 2 days 3 days 4 days

h 1.64 1.73 1.89 2.04
hu 1.77 1.93 1.93 1.92
hv 1.77 1.93 1.95 1.90
hw 1.76 1.80 2.38 1.85

and confirm second order convergence for this smooth test case at early times. Here
we used the second order wave-propagation algorithm without limiters. Note that
this convergence test only worked for relatively small times. This might be related to
the above-mentioned unstable behavior of the 4-Rossby–Haurwitz wave. In [12], we
presented convergence studies for advective transport on the sphere which confirmed
the second order accuracy of the method.

8.7. Reaction-Diffusion Equations on the Sphere. Many applications, in par-
ticular biological applications, require the approximation of reaction-diffusion systems
on the sphere. As an example we present calculations for pattern formation of a Tur-
ing model with two interacting chemicals u and v. For this we use the model equations
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Fig. 8.10 Turing patterns calculated on the sphere using 300× 150 grid points (species u is shown).
Striped pattern: δ = 0.0021, D = 0.516, τ1 = 3.5, τ2 = 0, α = 0.899, β = −0.91, γ = −α.
Spotted pattern: δ = 0.0045, D = 0.516, τ1 = 0.02, τ2 = 0.2, α = 0.899, β = −0.91,
γ = −α.

from [4] and [48] that have the form

∂u

∂t
= Dδ∆Su+ αu

(
1− τ1v

2)+ v(1− τ2u),

∂v

∂t
= δ∆Sv + βv

(
1 +

ατ1

β
uv

)
+ u(γ + τ2v),

(8.8)

where ∆S denotes the Laplace–Beltrami operator. Here, (u, v) = (0, 0) is a spatially
uniform steady state, which is unique for γ = −α. Turing showed that under certain
conditions of the parameter values the steady state could be linearly stable in the
absence of diffusion but unstable in the presence of diffusion. This diffusion-driven
instability leads to the formation of different patterns. The interaction parameter
τ1 associated with cubic coupling favors the formation of a striped pattern. The
quadratic coupling τ2 produces spot patterns. The parameter δ describes the size of
the domain in terms of the chosen wavelength presented in the pattern. Initially, u
and v take random values between −1/2 and 1/2. In Figure 8.10 we present plots
from a numerical simulation for two different sets of parameter values leading to a
striped and a spotted pattern, respectively.

In addition to the reaction-diffusion process modeled in (8.8), the species u and
v could also propagate on the sphere due to advection processes. In the example
provided on the webpage a rotation of u and v on the sphere is included, leading to
the same pattern which rotates on the sphere.
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