
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 31, No. 6, pp. 4066–4099

A FINITE VOLUME METHOD FOR SOLVING PARABOLIC
EQUATIONS ON LOGICALLY CARTESIAN CURVED SURFACE

MESHES∗
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Abstract. We present a second order finite volume scheme for the constant-coefficient diffusion
equation on curved parametric surfaces. While our scheme is applicable to general quadrilateral
surface meshes based on smooth or piecewise smooth coordinate transformations, our primary moti-
vation for developing the present scheme is to solve diffusion problems on a particular set of circular
and spherical meshes introduced in [D. A. Calhoun, C. Helzel, and R. J. LeVeque, SIAM Rev., 50
(2008), pp. 723–752] for the discretization of hyperbolic problems. These grids are generated from
mappings of a single Cartesian grid and were designed to have nearly uniform cells sizes and avoid the
pole singularity associated with polar or spherical grid mappings. The present method for parabolic
equations offers several advantages. It does not require analytic metric terms, shows second order
accuracy on our disk and sphere grids, can be easily coupled to existing finite volume solvers for
logically Cartesian meshes, and handles general mixed boundary conditions. Our parabolic scheme
should appeal to researchers in the fields of geophysical fluid dynamics, computational biology, and
any other discipline that requires the solution of parabolic equations on quadrilateral surface meshes.
In this article, we present several numerical examples demonstrating the accuracy of the scheme, and
then use the scheme to solve advection-reaction-diffusion equations modeling biological pattern for-
mation on surfaces.
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1. Introduction. We present a finite volume method for the solution of parabolic
problems on smooth parametric surfaces. The main ingredient of this method is a
finite volume discretization of the surface Laplacian on a logically Cartesian surface
mesh. While the method can be adapted for use on general quadrilateral grids based
on smooth or piecewise smooth mappings, we focus our attention here on a set of
mappings for circular and spherical regions that were designed to have nearly uniform
cell sizes and to avoid the pole singularities in polar or spherical grid mappings [12].
The chief advantages of our method are that the scheme does not require analytic
metric terms and can be easily coupled with existing finite volume hyperbolic solvers
for logically Cartesian surfaces meshes. We also show how to include general mixed
boundary conditions in the parabolic scheme and how to couple it with advection
solvers to solve advection-reaction-diffusion equations on surfaces.

Our main motivation for the present work is to solve diffusion equations on the
circular and spherical grids introduced in [12]. These grids have the useful property
that they are obtained by a mapping of a single Cartesian grid in computational space
and do not use multiblock data structures or unstructured meshes. Hence, existing
numerical methods for single logically Cartesian grids, including those which make
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use of adaptive mesh refinement, can be easily adapted for use on these grids. In
[12], we showed how to solve hyperbolic equations on these circular and spherical
grids and demonstrated that we can obtain accurate results for the Euler equations
on a disk, the shallow water wave equations on the sphere, and acoustic equations
on a mesh with embedded cylinders. The presence of metric discontinuities in these
mappings does not appear to degrade the solutions to such problems, suggesting that
these mappings may be useful for a variety of hyperbolic problems.

In this paper, we seek a finite volume discretization of the surface Laplacian that
complements our hyperbolic solvers cited above and is suitable for solving parabolic
problems on surface grids. In [12], we briefly discuss the approximation of a reaction-
diffusion equation on the sphere, but in that presentation we rely on analytic metric
terms to formulate the finite volume fluxes for the parabolic equations. Since our
hyperbolic discretization for quadrilateral surface meshes relies only on quantities
that can be easily computed from the physical location of mesh vertices, we seek a
discretization for the surface Laplacian that also relies only on the discrete geometry
of our mesh. Such a discretization would fit nicely into our framework for solving
hyperbolic problems and would complement our existing solvers for PDEs on our disk
and sphere grids, making these grids useful to a wide variety of application areas.

Existing literature on discretizations of the surface Laplacian, otherwise known
as the Laplace–Beltrami operator, contains many references to methods based on
finite element and finite difference discretizations on unstructured triangle meshes.
Dziuk, in [20], was the first author to present a finite element discretization of el-
liptic partial differential equations on surfaces using a triangular mesh and linear
elements. In a more recent paper, Dziuk and Elliot used this approach to discretize
parabolic equations on surfaces [21]. Pinkall and Polthier constructed an approxi-
mation for computing minimal surfaces that led to the well-known “cotan” formula
for the Laplacian at vertices of triangular surface meshes [43]. More recent articles
from the computer graphics and computer-aided geometric design literature describe
similar approaches to discretizing the surface Laplacian [53, 39, 57, 37, 18]. Xu [57]
summarizes several such discretizations, including the cotan formula, for triangular
meshes. For our purposes, the main drawback to these formulas for triangles is that
there appears to be no clear way to extend them to quadrilateral cells. Subdividing
the quadrilateral cell into triangles is not a satisfying solution, as the discretization
for each quadrilateral mesh cell will depend on how that cell is subdivided. Xu [37] re-
cently addressed this concern by developing a discretization for the Laplace–Beltrami
operator on quadrilaterals. However, the purpose of that paper, as with many articles
coming from the graphics and geometric design community, is to derive a formally
consistent discretization of the differential operator, not necessarily to solve PDEs.
As it turns out, this requirement of formal consistency can be much more difficult
to satisfy than that of the convergence of solutions to elliptic or parabolic equations.
It is known, for example, that finite volume schemes for general meshes may not be
formally consistent, yet can still lead to second order convergence results [52, 30, 22].

In another approach to solving parabolic problems on surfaces, one does not
assume an underlying surface mesh, but instead views the surface as implicitly defined
by a level-set function embedded in three-dimensional space [46, 7, 49, 24, 2, 17]. The
parabolic problem is then written in terms of the three space variables, but formulated
in such a way that the solution to the three-dimensional problem coincides with the
desired solution on the implicitly defined surface. These methods have the obvious
advantage that they avoid the need for a surface parametrization and hence can be
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used for very general, possibly evolving, surfaces. This method has recently gained
popularity in computational biology, where highly convoluted, multiply connected
surfaces are common but may not be easily defined or parameterized [49, 42, 48].
Since we assume at the outset, however, that we have a surface parameterization,
these methods do not appear to offer us any particular advantages and, in any case,
do not couple in an obvious way with our existing hyperbolic solvers for quadrilateral
surface meshes.

Finally, there is an active research community dedicated to the development of
schemes based on “diamond-cell” approximations and “discrete duality finite vol-
ume” (DDFV) principles for solving diffusion problems on unstructured finite volume
meshes in two- and three-dimensional Euclidean space [1, 3, 8, 14, 16, 27, 15, 19, 50,
28, 36, 31]. For a comparison of more than 20 of these schemes, see [25]. For many
of these schemes, convergence proofs establish first order accuracy, although second
order accurate results are usually seen in practice, even on very skewed meshes or for
problems with highly anisotropic or discontinuous diffusion tensors [19, 3, 8]. To take
advantage of the extensive practical and theoretical results available for these schemes,
we could view the problem of surface diffusion as an anisotropic diffusion process in
which the diffusion tensor is derived from a coordinate transformation rather than
from physical considerations. This is essentially the approach we took in [12], where
we solved a reaction-diffusion system on our sphere grid using a diamond-cell scheme
on a uniform Cartesian mesh and a diffusion tensor derived analytically from the
sphere mapping. Although we are not familiar with other specific efforts to apply
diamond-cell or DDFV schemes directly in this way, our experience suggests that
these methods should generally work well. A major drawback to this approach is that
for general mappings it can be difficult to derive the algebraic expressions needed to
define the metric tensor.

In this paper, we take an alternative viewpoint and consider surface diffusion
that is physically isotropic (i.e., the principle diffusion directions are aligned with
coordinate directions), but make use of the fact that the diamond-cell and DDFV
schemes referenced above are specifically designed to provide accurate discretizations
for general unstructured meshes. We use as our starting point a semidiscrete finite
volume approximation of the Laplace–Beltrami operator on a quadrilateral surface
mesh. By replacing the analytic metric terms that appear in this expression with their
discrete equivalents, we derive a nine-point stencil for the Laplace–Beltrami operator
that requires only the location of mesh cell centers and vertices and in particular does
not require surface normals or analytic expressions for the metric. We combine this
discretization with an explicit time stepping scheme to solve parabolic equations on
our disk and sphere grids, and provide numerical evidence showing that these solutions
are second order accurate if we take into account discontinuities in the derivatives of
the metric for these grids and reduce to first order if we ignore these discontinuities.
The scheme we derive is closely related to the diamond-cell schemes referenced above.
We could have based our scheme on the DDFV methods of Hermeline and others
[27, 19], but since these schemes require twice as many unknowns as the diamond-cell
schemes, their use can be practically justified only as part of an implicit time stepping
strategy requiring the solution to a linear system and that can take full advantage of
the superior matrix properties that the DDFV methods offer.

A second goal of this paper is to show that the resulting scheme has low computa-
tional overhead and can be coupled easily into an existing solver for hyperbolic prob-
lems. We avoid solving linear systems by using an explicit Runge–Kutta–Chebyshev
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(RKC) solver of Sommeijer, Shampine, and Verwer [51] and show that the RKC
scheme requires fewer function calls (or matrix-vector multiplies, in the case of the
implicit solver) than either the forward Euler or an implicit method based on BICG-
stab. To demonstrate how our scheme can be easily used with existing hyperbolic
solvers, we couple our parabolic solver with the wave-propagation algorithms avail-
able in Clawpack [32] to solve an advection-reaction-diffusion problem on the disk.

In what follows, we first describe our disk and sphere grids and then describe the
general fractional step scheme for solving advection-reaction-diffusion problems. In
section 3.1.1, we describe our Laplace–Beltrami discretization and follow this with a
brief discussion of the advection scheme on surface grids. In section 3.1.2 on imple-
mentation details, we briefly describe the RKC method for explicit time stepping and
various components needed to achieve second order accuracy, including modifications
near metric discontinuities and implementation of general boundary conditions. Then,
in section 4, we present an accuracy study for the discretization of parabolic problems
on the disk, the hemisphere, and the sphere. Finally, we present test calculations for
chemotaxis in a petri dish and for Turing patterns on a surface. In the appendices,
we compare our scheme with the cotan formula [43, 20] of Dzuik and others for tri-
angular meshes (Appendix A) and Hermeline’s scheme [27] for flat polygonal meshes
(Appendix B).

2. Disk and sphere grid mappings. In this section we describe the grids that
are used in our test calculations. These are grids for the circular disk and sphere that
were introduced in [12]. We also describe a grid for a surface that can be obtained
by a mapping of the sphere grid. All of these grids are constructed to avoid the pole
singularity and to have nearly uniform cell sizes. The ratio of largest to smallest grid
cell sizes is nearly two and does not increase under grid refinement. An additional
advantage of these grids is that they are described by a mapping of a single rectangular
mesh in computational space. This greatly simplifies the implementation of numerical
methods (particularly those which use adaptive mesh refinement (AMR)) and the
postprocessing and visualization of the results.

A polar coordinate grid for the disk as well as a longitude-latitude grid for the
sphere are, of course, obvious examples of logically Cartesian grids for the disk and
sphere and are often used in applications. However, the pole singularity leads to severe
time step restriction when using explicit numerical methods which are typically used
for the approximation of hyperbolic PDEs.

2.1. Mappings for the disk. In this section, we describe a mapping which
maps the computational domain [−1, 1] × [−1, 1] to the unit disk. To describe the
mapping, we focus our attention on the region of the square in which computational
coordinates (ξ, η) satisfy |ξ| ≤ η. This region corresponds to the upper triangular
region between the two diagonals of the square. We refer to this region as the north
sector of the computational domain. The mapping in this sector is based on the idea
that we can map a horizontal line segment between points (−d, d) and (d, d), with d =
max(|ξ|, |η|), to a circular arc of radius R(d), passing through points (−D(d), D(d))
and (D(d), D(d)). The center of the circle on which this arc lies is given by (x0, y0) =
(0, D(d)−√R(d)2 −D(d)2). A point (ξ, η) in the north sector is mapped to the unit
disk by the mappings Xn(ξ, η) and Yn(ξ, η) given by

(2.1)
Xn(ξ, η) = D(η)

ξ

η
,

Yn(ξ, η) = D(η) −
√
R(η)2 −D(η)2 +

√
R(η)2 −Xn(ξ, η)2,

⎫⎬⎭ |ξ| ≤ η.
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Fig. 2.1. Grids for the circular disk. On the left is a grid for the disk obtained using (2.2).
This mapping is not smooth across the two diagonal lines bisecting the circle. On the right is a grid
which is optimized with respect to smoothness.

The mapping to other sectors is easily obtained by negating and/or swapping the
arguments (ξ, η) or functions (Xn, Yn). For example, the mapping in the west sector
is given by Xw(ξ, η) = Yn(η,−ξ) and Yw(ξ, η) = −Xn(η,−ξ). MATLAB scripts for
this and other mappings are given in [12].

There are many choices for R(d) and D(d) that lead to useful grids. For example,
one choice that is well suited for the unit disk is

(2.2)
D(d) =

d√
2
,

R(d) = 1.

This choice leads to the grid on the left in Figure 2.1. Also in Figure 2.1, we show
an example of an optimally smooth grid obtained using mesh generation techniques
[29]. By comparing this grid with ours, we see that, with the exception of the metric
discontinuity along the diagonals, our grid is quite similar to the optimally smooth
one, and much simpler to generate. In either case, once the location of the grid cells
is known, the same algorithms for the discretization of PDEs can be applied. As we
will see, our grids will require simple modifications at metric discontinuities to obtain
second order accuracy.

2.2. A mapping for the unit sphere. The above mapping for the unit disk can
be used directly to create a grid for the unit hemisphere or sphere. To parameterize
the hemisphere, for example, we could simply describe the hemispherical surface as
a function of physical locations (X(ξ, η), Y (ξ, η)) from the disk mapping. However,
using the formula for D(d) given in (2.2) will lead to very elongated cells near the
equator. To remedy this, we seek a D(d) which compresses azimuthal grid lines near
the outer edge of the disk mappings. An example of a function D(d) which does this
is

(2.3) D(d) =
sin(πd/2)√

2
.

The plot at the left in Figure 2.2 shows a grid generated using this D(d), along with
R(d) = 1.

In general, if we are given a mapping X(ξ, η) and Y (ξ, η) from the square [−1, 1]×
[−1, 1] to the unit circle, we can define mapping functions Xs(ξ, η), Ys(ξ, η), and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINITE VOLUME METHODS ON SURFACES 4071

Fig. 2.2. On the left is a grid for the disk which redistributes points near the boundary using
(2.3) and which is used to construct the sphere grid shown in the right picture. The mapping used
to construct the sphere grid is not smooth at the equator or along the diagonals inherited from the
disk mapping.

Zs(ξ, η) from the rectangular region [−3, 1]× [−1, 1] to the sphere as

(2.4)

Xs(ξ, η) =

{
X(−(ξ + 2), η) if |ξ + 2| ≤ 1,

X(ξ, η) if |ξ| ≤ 1,

Ys(ξ, η) = Y (ξ, η),

Zs(ξ, η) =

{ −√1− (X(−(ξ + 2), η)2 + Y (ξ, η)2) if |ξ + 2| ≤ 1,√
1− (X(ξ, η)2 + Y (ξ, η)2) if |ξ| ≤ 1.

Using functions X(ξ, η) and Y (ξ, η) based on D(d) as defined in (2.3) leads to the
sphere mesh shown in Figure 2.2.

Both our disk and sphere grids parameterize the surface using piecewise smooth
mappings from computational space. For the disk and sphere mappings, metric dis-
continuities occur along the diagonals of the computational grid, and for the sphere
mapping, we also have discontinuities along the equator of the sphere. As we will see,
it is important to take into account these discontinuities when discretizing parabolic
problems.

2.3. A mapping of the hemisphere to a surface. Grids for domains that
can be described by a mapping from the sphere (or disk) can easily be constructed
as an extension of the grids discussed so far. Here we give an example for a so-called
supershape proposed by Gielis [23]. Gielis suggested a class of formulas to study forms
in plants and other organisms. Here we describe one particular surface and later show
how we can easily apply our numerical scheme to solving reaction-diffusion equations
on this interesting shape.

To describe the supershape, we define functions

(2.5) ri(α) = (| cos(miα/4)|+ | sin(miα/4)|)−1
, i = 1, 2.

The surface is obtained by a spherical product of the form

X(φ, θ) = r1(θ) cos θ r2(φ) cosφ,

Y (φ, θ) = r1(θ) sin θ r2(φ) cosφ,

Z(φ, θ) = r2(φ) sin φ,

(2.6)
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Fig. 2.3. The mesh on the left is based on a longitude-latitude discretization of the surface
described by (2.5), (2.6) with m1 = 5, m2 = 2.5. The right plot shows the same surface, constructed
from a mapping of our sphere grid. Only the upper half of the supershape mesh is shown.

with latitude −π/2 ≤ φ ≤ π/2 and longitude −π ≤ θ ≤ π. The parameter values mi

in (2.5) specify the number of symmetric sectors. The particular choice m1 = 5 and
m2 = 2.5 leads to the surfaces shown in Figure 2.3. In the left plot of that figure, the
surface is discretized using spherical coordinates (φ, θ).

The longitude-latitude discretization shown in Figure 2.3 exhibits the dramatic
effects of the pole singularity present when mapping the supershape from spherical
coordinates. Using our discretization of the sphere, we can obtain a mesh for this
surface in which mesh cells are much more uniformly spaced. To obtain the grid shown
in Figure 2.3, we first map each point in the computational space to a hemisphere
using our hemisphere mapping, and then map the corresponding (φ, θ) coordinates
to the supershape. It appears that the supershape grid appears to resolve the ridges
much less cleanly than the polar grid. However, the fact that the five ridges on the
supershape align exactly with radial coordinate lines of the polar grid depends only
on our fortuitous choice of number of radial coordinate lines. In this paper, we do not
do anything special to treat the discontinuities in curvature on the supershape.

3. Finite volume methods for advection-reaction-diffusion problems on
surfaces. In this section, we describe a numerical method for the approximation of
advection-reaction-diffusion equations of the form

(3.1)
∂q

∂t
+∇ · f(q) = ∇2q +G

on a surface S embedded in R3. Here q(x, t) is a vector valued quantity defined on the
surface, f(q) is the flux function, and G is a source term. In biological applications,
for example, this source term is used to model reactions between interacting species.
Throughout this paper, we use ∇· and ∇2 to denote the divergence and Laplacian
operators on the surface. A flat surface is included as a special case.

We use a fractional step approach in which we split the approximation of (3.1)
into subproblems which we solve in an alternating fashion. These two subproblems,
solved one after the other, are

∂q

∂t
+∇ · f(q) = 0,(3.2)

∂q

∂t
= ∇2q +G.(3.3)

The solution to the hyperbolic subproblem is approximated using the wave propa-
gation algorithms described in [33] and implemented in Clawpack [32]. In [12], we
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presented the wave propagation algorithm for the discretization of hyperbolic prob-
lems on the circle and the sphere grid. A brief description can also be found in section
3.2 of this paper.

3.1. Solving the reaction-diffusion problem. In the following subsection,
we describe a finite volume discretization of the Laplace–Beltrami operator that can
be used for general smooth quadrilateral surface meshes. Then, in section 3.1.2, we
describe the explicit time stepping strategy for evolving the reaction-diffusion problem.
In section 3.1.3, we describe how to obtain accurate values at mesh cell nodes, and
finally in section 3.1.4, we describe how to impose mixed physical boundary conditions
(in the case of the disk or hemisphere), or artificial boundary conditions (in the case
of the sphere) on the boundary of the computational domain.

3.1.1. A finite volume approximation of the surface Laplacian. To derive
a finite volume approximation to the Laplace–Beltrami operator, we start by assuming
the existence of a smooth surface parameterization given by

(3.4) T (ξ, η) := (X(ξ, η), Y (ξ, η), Z(ξ, η))T .

For now, we will assume that this mapping is differentiable. Using T (ξ, η), we can
define the vectors tangent to coordinate lines on the surface as

(3.5) t(1) :=

(
∂X

∂ξ
,
∂Y

∂ξ
,
∂Z

∂ξ

)T

, t(2) :=

(
∂X

∂η
,
∂Y

∂η
,
∂Z

∂η

)T

.

The surface metric tensor aαβ is defined in terms of the t(α) as

(3.6) aαβ = t(α) · t(β), α, β = 1, 2,

and the conjugate tensor aαβ is given as

(3.7) a11 =
a22
a

, a12 = a21 = −a12
a

, a22 =
a11
a

,

where a is the determinant of aαβ and is given by a = a11a22 − (a12)
2.

Using the conjugate tensor, we can define a set of conjugate vectors t(α) in terms
of t(α) as

(3.8)
t(1) := a11t(1) + a12t(2),

t(2) := a21t(1) + a22t(2).

It is easy to verify that t(α) are space vectors tangent to the surface. Furthermore,
we can show that

(3.9) t(α) · t(β) =
{

1 if α = β,
0 otherwise.

From this, it follows that t(α) ·t(β) = aαβ. What is important for our purposes is that
these conjugate vectors provide us with surface directions normal to the tangents t(α)
and hence normal to surface coordinate lines.

We now apply the divergence theorem for surfaces to construct a finite volume
approximation to the integral of the surface Laplacian ∇2q = ∇ · ∇q. The surface
divergence theorem is given by

(3.10)

∫
S

∇2q dS =

∫
∂S

∇q · ννν ds,
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where S is a patch on the surface, ∂S is the boundary of the patch, and ννν is a unit
vector tangent to the surface and normal to ∂S.

We construct our finite volume approximation to (3.10) by first approximat-
ing normal fluxes at the boundary of a small patch S and then approximating the
line integral of these fluxes along the boundary. To illustrate this, we let S be
an infinitesimal surface control volume defined over the rectangular region C0 =
[ξ0, ξ0 + Δξ] × [η0, η0 + Δη] in computational space. From here on we restrict the
description to quadrilateral grid cells. As an example, we consider the edge of the
control volume corresponding to ξ = ξ0. We refer to this as the left edge of the control
volume S. A unit vector normal to this edge is given by

(3.11) ννν(1) :=
t(1)

‖ t(1) ‖ =
t(1)√
a11

,

where ‖ · ‖ is the usual Cartesian product. The normal derivative of q at this edge can
be computed by taking the dot product of ννν(1) with the gradient of q. If we assume
that the gradient of q has no components in the direction normal to the surface, we
can express it in Cartesian coordinates as

(3.12)

(
∂q

∂X
,
∂q

∂Y
,
∂q

∂Z

)T

=
∂q

∂ξ
t(1) +

∂q

∂η
t(2).

The normal derivative of q at the left edge can then be computed as

(3.13)

dq

dn

∣∣∣∣∣
ξ=ξ0

=

(
∂q

∂ξ
t(1) +

∂q

∂η
t(2)
)
· ννν(1)

=
1√
a11

(
a11

∂q

∂ξ
+ a21

∂q

∂η

)
.

For a finite volume approximation, we are interested in an integral of the normal
flux (3.13) over the left edge of S. To first order, this integral can be approximated by
multiplying (3.13) by the physical length of the edge. In general, infinitesimal lengths
ds on the surface can be computed from the surface metric aαβ using

(3.14) ds2 = a11 dξ2 + 2a12 dξ dη + a22 dη2.

Along the edge ξ = ξ0, we have dξ = 0, so that the finite edge length can be approx-
imated by ds ≈ √a22Δη. The integral of the flux in (3.13) over the left edge of the
control volume dS can then be approximated as

(3.15) ds
dq

dn

∣∣∣∣∣
ξ=ξ0

≈ √a
(
a11

∂q

∂ξ
+ a21

∂q

∂η

)
Δη,

where we have used (3.7) to write (
√
a22Δη)/

√
a11 =

√
aΔη.

To derive a semidiscrete approximation to (3.10), we approximate the integrals of
the normal fluxes across the remaining three edges of S, orient all normals so that they
are directed out of the control volume, and express the finite volume approximation
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to the integral of the surface Laplacian as

(3.16)

∫
S

∇2q dS =

∫
∂S

∇q · ννν ds

≈
⎧⎨⎩√a

(
a11

∂q

∂ξ
+ a21

∂q

∂η

) ∣∣∣∣∣
ξ=ξ0+Δξ

−√a
(
a11

∂q

∂ξ
+ a21

∂q

∂η

) ∣∣∣∣∣
ξ=ξ0

⎫⎬⎭Δη

+

⎧⎨⎩√a
(
a12

∂q

∂ξ
+ a22

∂q

∂η

) ∣∣∣∣∣
η=η0+Δη

−√a
(
a12

∂q

∂ξ
+ a22

∂q

∂η

) ∣∣∣∣∣
η=η0

⎫⎬⎭Δξ.

Using the approximation dS ≈ √a ΔξΔη, one can also view the above as an approx-
imation to the integral of the Laplace–Beltrami operator over the computational cell
C0. In differential form, the Laplace–Beltrami operator is given by

(3.17) ∇2q =
1√
a

∂

∂ξ

{√
a

(
a11

∂q

∂ξ
+ a12

∂q

∂η

)}
+

∂

∂η

{√
a

(
a21

∂q

∂ξ
+ a22

∂q

∂η

)}
.

Obtaining discrete metric terms. Because in general, our mesh is nonorthogonal,
our discretization will involve function values at both centers and nodes of an un-
derlying Cartesian mesh. We discretize the computational domain [ax, bx] × [ay, by]
using a uniform Cartesian mesh with mesh spacing Δξ and Δη. Mesh cell corners or
nodes are given by (ξ̂i, η̂j), defined by ξ̂i = ax + (i − 1)Δξ and η̂j = ay + (j − 1)Δη
for (i, j) in the index space [1, . . . ,Mx + 1]× [1, . . . ,My + 1]. Cell centers (ξi, ηj) are
defined over the index space [0, . . . ,Mx + 1] × [0, 1, . . . ,My + 1]. For problems with
periodic boundary conditions, or for our sphere example, cell centers are defined over
the entire index space as ξi = ax + (i − 1/2)Δξ and ηj = ay + (j − 1/2)Δη. For
problems in which we impose Dirichlet or flux conditions at physical boundaries, we
set ξ0 = ax, ξMx+1 = bx, η0 = ay, and ηMy+1 = by.

Associated with each node and cell center in the computational space are nodes
and centers of mesh cells in the physical domain. Using the notation suggested by Her-
meline and others who have developed methods based on diamond-cell approximations
or discrete duality principles [16, 27, 19], we refer to the physical points associated

with (ξi, ηj) as the primal points, and physical points associated with (ξ̂i, η̂j) as the
dual points. The primal mesh cell Pij is the cell whose center is xij . Analogously, the
dual mesh cell Dij is the cell with center x̂ij . Note that xij and x̂ij are generally not
the centers of mass of the primal and dual grid cell, respectively. Figure 3.1 shows
the locations of the primal and dual nodes.

At primal and dual points, we define the primal value of function q as qij =

q(ξi, ηj). Dual values are defined analogously as q̂ij = q(ξ̂i, η̂j). For a finite vol-
ume scheme, these values should approximate the average value of the function q over
the primal or dual mesh cells.

We let Si−1/2,j denote the primary cell edge defined as the straight line segment
(not necessarily on the surface) connecting primal nodes x̂i,j+1 and x̂ij . Similarly,

we let Ŝi−1/2,j denote the edge of the dual cell connecting dual nodes xi−1,j and
xij . Associated with these edges are positively oriented vectors (with respect to our
Cartesian mapping)

(3.18) ti−1/2,j := x̂i,j+1 − x̂ij , t̂i−1/2,j := xij − xi−1,j .
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Fig. 3.1. Diagrams showing the location of primal and dual nodes on a quadrilateral surface
mesh. The open circles are the primal points xij (i.e., dual nodes), and the closed circles are the
dual points x̂ij (i.e., primal nodes). Dual nodes are the corners of primal mesh cells, and primal
nodes are the corners of dual mesh cells. If physical boundary conditions are to be imposed at the
computational boundary, primal mesh points are located directly on the physical boundary, as shown
in the left figure. The right figure shows a general region on the mesh and the vectors ti−1/2,j (solid

arrow at primal mesh cell edge Si−1/2,j) and ̂ti−1/2,j (dashed arrow at dual cell edge ̂Si−1/2,j).

The lengths of these vectors (and hence of associated edges) are given by

(3.19) |Si−1/2,j | :=‖ ti−1/2,j ‖, |Ŝi−1/2,j | :=‖ t̂i−1/2,j ‖,
where ‖ · ‖ is the Euclidean norm in R

3. Similarly, we define the primary mesh cell
edge Si,j−1/2 as the edge between primal nodes x̂i+1,j and x̂ij . The associated dual

mesh cell edge Ŝi,j−1/2 is the line segment between dual nodes xij and xi,j−1. Vectors
associated with these edges are given by

(3.20) ti,j−1/2 := x̂i+1,j − x̂ij , t̂i,j−1/2 := xij − xi,j−1,

and their associated lengths |Si,j−1/2| and |Ŝi,j−1/2| are defined as above.
Using these definitions, we approximate the metric tensor aαβ and its conjugate.

For example, at edge Si−1/2,j , we have

(3.21)

a
(i−1/2,j)
11 = (t̂i−1/2,j) · (t̂i−1/2,j),

a
(i−1/2,j)
12 = a

(i−1/2,j)
21 = (t̂i−1/2,j) · (ti−1/2,j),

a
(i−1/2,j)
22 = (ti−1/2,j) · (ti−1/2,j).

The determinant of a
(i−1/2,j)
αβ is given by

(3.22) a(i−1/2,j) = det
(
a
(i−1/2,j)
αβ

)
= ‖ (t̂i−1/2,j)× (ti−1/2,j) ‖2,

and its conjugate aαβ(i−1/2,j) is defined as in (3.7). Metric terms at the remaining three

edges of the control volume S are defined analogously.
To define the partial derivatives of q in (3.16), we may, without loss of generality,

assume that for our underlying mapping we have Δξ = Δη = 1. Then derivatives of
q at edge Si−1/2,j can be approximated by

(3.23)
∂q

∂ξ

∣∣∣∣∣
Si−1/2,j

≈ qi,j − qi−1,j := Δqi−1/2,j ,
∂q

∂η

∣∣∣∣∣
Si−1/2,j

≈ q̂i,j+1 − q̂i,j := Δq̂i−1/2,j .
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At the edge Si,j−1/2 we have analogous definitions

(3.24)
∂q

∂ξ

∣∣∣∣∣
Si,j−1/2

≈ q̂i+1,j − q̂ij := Δq̂i,j−1/2,
∂q

∂η

∣∣∣∣∣
Si,j−1/2

≈ qij − qi,j−1 := Δqi,j−1/2.

Finally, we will make use of the vector identities

(3.25)

(t̂i−1/2,j) · (t̂i−1/2,j) = |Ŝi−1/2,j |2,
(ti−1/2,j) · (ti−1/2,j) = |Si−1/2,j |2

,

(t̂i−1/2,j) · (ti−1/2,j) = |Ŝi−1/2,j | |Si−1/2,j | cos(θi−1/2,j),

‖ (t̂i−1/2,j)× (ti−1/2,j) ‖ = |Ŝi−1/2,j ||Si−1/2,j | sin(θi−1/2,j),

where θi−1/2,j is the angle between t̂i−1/2,j and ti−1/2,j .
Using the above definitions and the vector identities, the flux in (3.15) is given

by

(3.26)

∫
Si−1/2,j

∂q

∂n
dL ≈ pi+1/2,j Δqi+1/2,j + ûi+1/2,j Δq̂i+1/2,j ,

and the integral of the Laplacian given in (3.16) is approximated as

(3.27)

∫
Pij

∇2q dS ≈ I lbij (q) :=
(
pi+1/2,j Δqi+1/2,j + ûi+1/2,j Δq̂i+1/2,j

)
− (pi−1/2,j Δqi−1/2,j + ûi−1/2,j Δq̂i−1/2,j

)
+
(
pi,j+1/2 Δqi,j+1/2 + ûi,j+1/2 Δq̂i,j+1/2

)
− (pi,j−1/2 Δqi,j−1/2 + ûi,j−1/2 Δq̂i,j−1/2

)
,

where

(3.28)
pi−1/2,j :=

(
|Si−1/2,j |
|Ŝi−1/2,j |

)
csc(θi−1/2,j),

ûi−1/2,j := − cot(θi−1/2,j).

This formula is closely related to that used by Hermeline [27] for approximating
the Laplacian on flat polygonal meshes, and the well-known “cotan” formula used
by Pinkall, Desbrun, and their coworkers [43, 18, 39] for approximating the surface
Laplacian. In the appendices, we show the connection between (3.28) and these other
formulas.

To obtain the pointwise Laplace–Beltrami operator, we divide the above approx-
imation by the area of the primal cell to get

(3.29) ∇2q ≈ Lij(q) :=
1

Area(Pij)
I lbij (q).

3.1.2. Explicit time stepping scheme for the diffusion problem. The
time stepping strategy we describe here is well suited for our disk and sphere grids. In
particular, we take advantage of the fact that our mappings for these surfaces generate
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grids with nearly uniform cell sizes, making the use of explicit time discretizations
practical.

We solve the parabolic equation given by

(3.30) qt = ∇2q +G(q, . . .),

where∇2q is approximated using (3.29) and Gmay depend on the solution, the spatial
location on the surface, or time.

We define time levels as tn = nΔt, for n = 0, 1, . . . . The computed solution at
time level n is then denoted qn. If we were to use a forward Euler scheme, our time
marching would take the form

(3.31) qn+1
ij = qnij +Δt

(
Lij(q

n) +Gn
ij

)
,

where qnij is the approximation

(3.32) qnij ≈
1

Area(Pij)

∫
Pij

q(x, t) dS.

The source term is then typically evaluated as Gn
ij ≡ G(qnij , . . .). For our disk and

sphere grids, pointwise values at primal points are good approximations to the cell
average, except in the nearly triangular cells along the diagonal. In those cells, the
location of the primal node approximates the location of the centroid only to first
order.

Because of the severe time constraints imposed by the numerical stability require-
ments of the forward Euler scheme, we in fact use a more sophisticated explicit time
marching scheme designed specifically for reaction-diffusion equations. This second
order accurate scheme is part of a class of Runge–Kutta–Chebyshev (RKC) meth-
ods proposed by Sommeijer, Shampine, and Verwer [51] and allows for a time step
Δt ≈ Δξ. The RKC solver, available on the web, also has low storage requirements,
making it an attractive alternative to implicit schemes, even for very large systems of
equations. For more details on this scheme, see [51, 34]. In section 4.2, we show that
the RKC solver is competitive with a standard implicit solver for parabolic equations.

3.1.3. Obtaining dual cell values. The accuracy of our overall scheme relies
crucially on the fact that we can accurately obtain the dual values needed by (3.27).
If these values are only first order accurate, even along lines, then the overall scheme
will be only first order accurate. In what follows, we assume that for our disk and
hemisphere grids we have Mx = My. For the sphere grid, we assume that Mx = 2My.
These assumptions allow us to easily handle the metric discontinuities that appear
along diagonal lines in the computational domains for these grids.

For regions of our disk and sphere mappings away from discontinuities in the
metric, we can obtain the dual cell values required by (3.27) by simply averaging
primal cell values to primal nodes using

(3.33) q̂ij =
1

4
(qi−1,j + qi−1,j−1 + qi,j−1 + qi,j) ≈ 1

Area(Dij)

∫
Dij

q(x, t) dS.

This is a second order approximation to the cell average over the dual cell Dij as long
as the function q is a smooth function of the computational variables (ξ, η) and the
computational grid is uniformly discretized.
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Our disk and sphere mappings are discontinuous at diagonals of the computational
grid, and so q(ξ, η) exhibits a discontinuity in the derivative along the diagonals, even
if the function in physical space is smooth across diagonals. Using (3.33) in these
cells reduces the overall accuracy of the solution to first order. To restore second
order accuracy for these meshes, we can take advantage of our uniform discretization
on the computational grid and the fact that the discontinuity lies exactly on the
diagonals of the computational grid. Along the diagonal, we expect the solution to be
smooth, and since computational variables corresponding to dual and primal nodes
are equidistributed along the diagonals, we can compute accurate dual cell values
using only the two neighboring primal values along the diagonal. This average is
given by

(3.34)
q̂ii =

1

2
(qi,i + qi−1,i−1) ,

q̂i,Mx−i+2 =
1

2
(qi−1,Mx−i+2 + qi,Mx−i+1) ,

where we have assumed that Mx = My. For the sphere, diagonal values are defined
analogously, where the same idea applies on each hemisphere of the sphere grid. This
simple modification restores overall accuracy of the scheme to second order; see section
4.

For problems in which we have physical boundary conditions to impose, the primal
values are assumed to lie exactly on the boundary, so it is natural to obtain dual
boundary values using an average based only on primal boundary values. For the
disk and hemisphere grids, we define

(3.35)

q̂1,j =
1

2
(q0,j−1 + q0,j) ,

q̂Mx+1,j =
1

2
(qMx+1,j−1 + qMx+1,j) ,

q̂i,1 =
1

2
(qi−1,0 + qi,0) ,

q̂i,My+1 =
1

2

(
qi−1,My+1 + qi,My+1

)
.

This is an accurate approximation as long as the domain boundary is smooth, as is
the case with our disk or hemisphere grid.

For the sphere grid, we use the same idea to compute dual cell values that lie
along the equator, since our sphere mapping is not smooth across the equator. In
section 3.1.4, we explain how we compute values for a set of fictitious primal cells,
that we place directly on the equator for the purpose of using (3.35) to obtain dual
cell values.

In the next section, we show how to impose physical boundary conditions to
obtain primal boundary values for general boundary conditions.

3.1.4. Boundary conditions for the diffusion problem. Because of the way
we position primal and dual points exactly on physical boundaries, Dirichlet condi-
tions can be applied by simply evaluating boundary conditions at these points. In
this case, it is not in fact necessary to use (3.35). Below, we describe how we handle
more general physical boundary conditions for the disk and hemisphere grids. Also
in this section, we describe how we treat metric discontinuities at the equator of the
sphere grid.
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Physical boundary conditions. For problems with physical boundaries, we can
impose general boundary conditions of the form

(3.36) aq + b
∂q

∂n
= c,

where a, b, or c can vary along the boundary. To discretize this equation, we first
define vectors containing boundary values for the primal and dual cells. Starting with
the values q1,0 and q1,1 and working around the Cartesian boundary counterclockwise,
we construct vectors qp of primal boundary values and qb, the closest interior values
to these boundary values, as

qb = [q1,1, q2,1, . . . , qMx,1, qMx,1, qMx,2, . . . , qMx,My , qMx,My , . . . . . . , q1,1]
T ,(3.37)

qp = [q1,0, q2,0, . . . , qMx,0, qMx+1,1, qMx+1,2, . . . , qMx+1,My , . . . . . . , q0,1]
T .(3.38)

The entries of each vector are given by qpk and qbk, for k = 1, 2, . . . , Np, Np = 2(Mx +
My). Note that in the definition of qb we have intentionally included corner entries
twice.

Similarly, we construct vectors p and û of the same length using the coefficients
defined in (3.28). These vectors are given by

(3.39)

p =

[
p1,1/2

|S1,1/2| ,
p2,1/2

|S2,1/2| , . . . ,
pMx,1/2

|SMx,1/2|
,
pMx+1/2,1

|SMx+1,1| , . . . . . . ,
p1/2,1

|S1/2,1|
]T

,

û =

[
û1,1/2

|S1,1/2| ,
û2,1/2

|S2/1/2| , . . . ,
ûMx,1/2

|SMx,1/2|
,
ûMx+1/2,1

|SMx+1/2,1| , . . . . . . ,
û1/2,1

|S1/2,1|
]T

.

Their entries are denoted by pk and ûk for k = 1, 2, . . . , Np. To ensure that our
resulting expression for the normal derivative at the boundary has the correct sign,
we define

(3.40) sdk =

{ −1, 1 ≤ k ≤Mx or Mx +My + 1 ≤ k ≤ 2Mx +My,
1, otherwise,

and simplify the notation that follows by redefining the entries of û from (3.39) as

(3.41) ûk ← sdkûk.

Finally, we construct a vector q̂d containing dual boundary values. Starting with
q̂1,1, we again work counterclockwise around the computational grid to get

(3.42) q̂d = [q̂1,1, q̂2,1, . . . , q̂Mx+1,1, q̂Mx+1,2, . . . , q̂Mx+1,My+1, q̂Mx,My+1, . . . , q̂1,3]
T .

We have intentionally omitted the expected final entry q̂1,2. Below, we treat this value
as an unknown which we solve for in a separate step. The vector in (3.42) has entries
q̂dk for k = 1, 2, . . . , Np − 1.

Using qp, q̂d, qb and coefficient vectors p and û, we discretize the boundary
conditions in (3.36) as
(3.43)

aqpk + b
(
pk(q

p
k − qbk) + ûk(q̂

d
k+1 − q̂dk)

)
= c, k = 1, 2, . . . , Np − 2,

aqpNp−1 + b
(
pNp−1(q

p
Np−1 − qbNp−1) + ûNp−1(α− q̂dNp−1)

)
= c,

aqpNp
+ b

(
pNp(q

p
Np
− qbNp

) + ûNp(q̂
d
1 − α)

)
= c.
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We can also rewrite condition (3.35) using these vectors to get

(3.44)

qp1 + qpNp
− 2q̂d1 = 0,

qpk + qpk−1 − 2q̂dk = 0, k = 2, . . . , Np − 1,

qpNp
+ qpNp−1 − 2α = 0.

Solving for qpk in (3.43) and substituting the resulting expressions into (3.44), we
obtain a linear system for unknowns q̂dk and an unknown α given by

(3.45)

(
T w
vT u

)(
q̂d

α

)
=

(
fT
fα

)
.

The matrix T ∈ R(Np−1)×(Np−1) is a tridiagonal matrix which we can invert using a
fast solver. The entries w and fT are column vectors of length Np − 1, and vT is a
row vector, also of length Np − 1. Entries u and fα are scalars.

Using (3.45), it is straightforward to show that for arbitrary α the solution q̂d

can be written as a linear combination of a time dependent solution φd
td and a time

independent solution φd
tid as

(3.46) q̂d = φd
td + αφd

tid,

where

(3.47) Tφd
td = fT and Tφd

tid = −w.

Using this form of the solution, we can then solve for α to get

(3.48) α =
fα − vTφd

td

u+ vTφd
tid

.

The solution φd
td depends on the time dependent solution qp through the right-hand-

side vector fT , and so must be solved for at each step. However, the solution φd
tid

depends only on the mesh geometry, and so can be solved for in a preprocessing step.
To describe the entries of the tridiagonal matrix T , the vectors v, w, and fT , and

scalars u and fα, we first define two sets of constants. These are given by

(3.49)

tk :=
bûk

a+ bpk
, t0 := tNp

rk :=
c+ bpkq

b
k

a+ bpk
, r0 := rNp

⎫⎪⎪⎪⎬⎪⎪⎪⎭ k = 1, . . . , Np.

Using the constants tk, the entries of the tridiagonal matrix T are given by

(3.50)

Tk,k−1 = tk, k = 2, . . . , Np − 1,

Tk,k = tk − tk−1 − 2, k = 1, . . . , Np − 1,

Tk,k+1 = −tk, k = 1, . . . , Np − 2;

the vectors v and w are given by

(3.51)
w1 = tNp , wNp−1 = −tNp−1,

v1 = −tNp , vNp−1 = tNp−1,
vk = wk = 0, k = 2, . . . , Np − 2;
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and the scalar u is given by

(3.52) u = tNp − tNp−1 − 2.

The right-hand-side vector fT and scalar fα are given in terms of constants rk as

(3.53)
(fT )k = −(rk−1 + rk), k = 1, . . . , Np − 1,

fα = −(rNp−1 + rNp).

Right-hand-side function for the RKC solver.

- In a preprocessing step, construct the matrix T and solve the tridiagonal system
Tφd

tid = −w.

- Call the RKC solver with a right-hand-side function Frkc(t, q), which takes
as input the current time and state variable q and returns the right-hand side
Lij(q) +G(q, . . .).

- The steps performed in this right-hand-side function are as follows:

1. Solve Tφd
td = fT , where fT is constructed using qp extracted from grid

data q passed from the RKC solver.
2. Compute α using (3.48).
3. Compute q̂d = φd

td + αφd
tid.

4. Use (3.43) and q̂d to evaluate primal boundary values qp.
5. On the grid interior, average primal values qij to dual values q̂ij using

(3.33) and (3.34). For dual boundary values, use (3.35) or the solution
q̂d computed in step 3 directly.

6. Compute Lij(q) at each nonboundary primal value over the entire grid.
7. Compute any source term values G(q, . . .) and add them to Lij(q).

-Return to the RKC solver a vector containing the Laplacian plus source terms for
each interior primal mesh cell. The same algorithm can be used for both problems
with physical boundaries (i.e., the disk or hemisphere) and for the sphere grid.

Ensuring flux continuity across the equator for sphere grids. A sphere does not
have physical boundaries, but our sphere mapping is not smooth across the equator,
and so to preserve the accuracy of our proposed scheme we explicitly ensure the
continuity of fluxes at the equator using an approach analogous to that used for
physical boundaries.

On the computational domain, we use the layer of ghost cell values bordering the
boundary of the computational grid to supply primal values needed to evaluate the
Laplacian. These primal values can be easily obtained by

(3.54)

q0,j = qMx,j

qMx+1,j = q1,j

}
, j = 1, . . . ,My,

qi,0 = qMx−i+1,0

qi,My+1 = qMx−i+1,My+1

}
, i = 1, . . . ,Mx.

To formulate the linear system needed to solve for dual values at the equator,
we first introduce fictitious primal boundary points directly on the equator, between
these dual points. On the computational grid, we place these points along the bottom
and top of the right half of the grid, the left edge, and along the interior center line.
We can think of these primal boundary values as bordering the upper-hemisphere of
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the sphere grid. Furthermore, we allow the ghost cell values (excluding corner ghost
cells) and interior values just left of the center-line to form a continuous array of ghost
cell values around this hemisphere grid.

In direct analogy with how we imposed the physical boundary conditions on
the hemisphere, we construct 1-d arrays for the sphere grid that start at the lower
left corner of the hemisphere grid (the point (−1,−1), in computational space), and
traverse the boundary of the right half of the computational grid counterclockwise,
returning to (−1,−1) via the center-line ξ = −1. These data arrays have Np =
2(Mx/2+My) points, where we are assuming that for the sphere mapping, Mx = 2My.
For the upper hemisphere, we construct the vector qu, containing primal values, in
exactly the same manner as we did in (3.38). The primal ghost cell values (i.e., values
in cells in the lower hemisphere that share an edge with the upper hemisphere) are
stored in the same manner in a vector q�. We also define the single vector qp of the
fictitious primal boundary values we introduced above. Dual cell values along the
equator are stored in q̂d, and as before, we use α to represent the last value in this
array and let α = q̂Mx/2+1,2.

To get coefficient vectors analogous to those defined in (3.39), we will need to
recompute the coefficients used in (3.27) for primal boundary points in our fictitious
array of boundary points, not from ghost cells. We create a set of coefficient vectors
pu and p� for the cells bordering the equator in the upper and lower hemisphere. We
do not need to apply the sign change in (3.41), since we match only fluxes, not normal
derivatives.

Using these definitions, we define fluxes at primal cell edges that lie on the equator.
For k = 1, 2, . . . , Np − 2, these fluxes are given by

(3.55)
Fu
k := puk(q

p
k − quk ) + ûu

k(q̂
d
k+1 − q̂dk),

F l
k := p�k(q

p
k − q�k) + û�

k(q̂
d
k+1 − q̂dk),

k = 1, 2, . . . , Np − 2.

Fluxes for k = Np − 1 and k = Np are given in terms of α, just as in (3.43).
These fluxes are directed out of their respective cells, and so, to ensure continuity

of fluxes across the boundary, we impose

(3.56) Fu
k + F �

k = 0, k = 1, 2, . . . , Np.

Solving for qpk and substituting this value into (3.44), we obtain a tridiagonal system
for the dual values along the equator, where now the coefficients tk and rk appearing
in (3.50)–(3.53) are given by

(3.57)

tk :=
ûu
k + û�

k

puk + p�k
, t0 := tNp

rk :=
pukq

u
k + p�kq

�
k

puk + p�k
, r0 := rNp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ k = 1, . . . , Np.

The dual values are obtained in exactly the same fashion as they were in section 3.1.4.

3.2. Solving the advection problem. Many PDEs of importance in scientific
fields include advection terms as well as diffusion terms. In section 5.1, we present a
numerical approach to solving a chemotaxis model in a petri dish. This model involves
both advection and diffusion of transported chemo-attractants.

Here we briefly describe how we solve the hyperbolic subproblem

∂tq +∇ · f(q) = 0
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for the scalar quantity q on our disk and sphere grids. The details of this approach
were described in [12] and are based on an approach for curvilinear grids found in
[33]. We perform this update on the primal grid cells.

A finite volume method can be applied on a grid cell Pij using the integral form
of the conservation law

d

dt

∫
Pij

q(x, t) dS = −
∫
∂Pij

f(q) · ννν ds,

where ννν is again the outward pointing unit normal vector at the boundary ∂Pij of
the grid cell Pij and f · ννν is the flux normal to the boundary. This leads to a finite
volume method of the form

Qn+1
ij = Qn

ij −
Δt

Area(Pij)

N∑
k=1

|Sk|F̆n
k ,

where Qn
ij is the cell average of the conserved quantity in grid cell Pij at time tn, F̆

n
k

represents a numerical approximation to the average normal flux across the kth side
of the grid cell, and |Sk| is the length of the kth side.

In our applications, a hyperbolic problem arises as a subproblem in the modeling
of chemotaxis. The equation has the form

(3.58)
∂q

∂t
+ α∇ ·

( ∇v
(1 + v)2

q

)
= 0,

where v = v(x, y, t) is assumed to be a given function in this fractional step and α is
a given constant parameter.

Following [55], we rewrite (3.58) as a transport equation of the form

(3.59)
∂q

∂t
+

∂

∂x
(U(x, y, t) q) +

∂

∂y
(V (x, y, t) q) = 0,

where the velocities U and V are given by

U =
α

(1 + v)2
∂v

∂x
,

V =
α

(1 + v)2
∂v

∂y
.

A finite volume advection scheme requires the velocity normal to cell interfaces. Using
the flux expression (3.15), we can write this normal derivative as

(3.60) ds
∂v

∂n
≈ √a

(
a11

∂v

∂ξ
+ a12

∂v

∂η

)
Δη.

Just as with the diffusion fluxes, we can substitute discrete geometric terms here and
obtain the flux formula in (3.26).

In this paper, the conserved quantity arising in the approximation of the hyper-
bolic subproblem is a scalar variable. The ideas presented here extend to systems of
hyperbolic equations, in which q is a vector valued quantity. In [12], for example, we
describe numerical methods for the shallow water wave equations on the sphere.
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3.3. Computing the area of mesh cells. To compute the average Laplacian
over a mesh cell, one needs to have an approximation to the mesh cell area. For flat,
quadrilateral grids, one can easily compute the area of mesh cells Pij by triangulating
the quadrilateral mesh cell and summing the areas of the resulting two triangles, or
directly by using formulas for areas of polygons. For general curved surfaces, however,
the first approach can lead to ambiguous values for the area, depending on how one
does the triangulation. Direct formulas for computing the area of quadrilateral surface
patches on general surfaces do not exist. Since we do not want to assume the existence
of an underlying metric, we instead approximate the surface locally by assuming that
the surface spanning the mesh cell has the bilinear function

(3.61) S(u, v) = c00 + c01u+ c10v + c11uv, 0 ≤ u, v ≤ 1,

where coefficients c�k ∈ R3 are computed from known locations of the mesh cell
corners. Using corner points x̂i+k,j+� for k, � = 0, 1, we get

c00 = x̂ij , c01 = x̂i+1,j − x̂ij , c10 = x̂i,j+1 − x̂ij ,(3.62)

c11 = x̂i+1,j+1 − x̂i+1,j − x̂i,j+1 + x̂ij .

The area of the surface element spanned by S(u, v) can then be computed by inte-
grating the surface element. This leads to the approximation
(3.63)

Area(Pij) ≈
∫ 1

0

∫ 1

0

‖ Su × Sv ‖ dudv =

∫ 1

0

∫ 1

0

‖ (c01 + c11v)× (c10 + c11u) ‖ dudv.

To compute the right-hand-side integral accurately, we used a fourth order quadrature
rule based on Gauss–Legendre nodes and weights.

4. Numerical accuracy study. In this section, we demonstrate the accuracy of
the Laplace–Beltrami operator when used as a discretization for parabolic equations
on general manifolds. The accuracy of the hyperbolic solver for the advection equation
on a sphere was demonstrated in [12]. As already discussed, we will use the RKC solver
for time stepping.

To test the scheme for general surfaces, we construct an artificial solution q(x, t)
of the form

(4.1) q(x, t) = A(t)Qe(x),

where x is a point on the surface. Then q(x, t) satisfies

(4.2) qt = ∇2q +
dA

dt
Qe(x)−A(t)∇2Qe(x).

For the test cases considered here, we use the simple time component

(4.3) A(t) = exp(−5t).
While this does not rigorously test the accuracy of the time marching scheme, our
focus here is to test the Laplace–Beltrami discretization. For the flat disk, we define
the spatial component Qe(x) as

(4.4) Qe(x) =
K∑

k=1

exp(−10 r2k), rk = ‖x−wk ‖,
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where wk is a point on the disk. For the sphere, we use a similar function given by

(4.5) Qe(x) =

K∑
k=1

exp(−10 θ2k), θk = acos(wk · x),

where wk is a unit vector normal to the surface of the sphere. To avoid inadvertently
biasing the distribution of Gaussians toward favorable locations on our disk and sphere
meshes, we choose the wk and θk randomly.

To evaluate the source term in (4.2), we have to be able to evaluate ∇2Qe(x) over
each mesh cell for general surfaces. Since our discretization of the parabolic equation
is based on an integral form of the equations, we can take advantage of the divergence
theorem to approximate the Laplacian in the source term as

(4.6) ∇2Qe(xij) ≈ 1

Area(Pij)

∫
Pij

∇2Qe(x, t) dS =
1

Area(Pij)

∫
∂Pij

∇Qe(x) · ννν dL.

To obtain an accurate approximation, we compute normal fluxes (given by (3.13))
along cell edges using known analytic metric terms and then integrate these fluxes
along the four cell edges of S using a high order Gauss quadrature rule. This procedure
allows us to test the accuracy of our scheme for any surface for which we can easily
obtain the vector t(α), defined in (3.8).

Using the RKC solver described in section 3.1.2, we time step the equation given
in (4.2). If we let Qij(t) be the average values of q(x, t) over the primal mesh cell Pij ,
then a spatial discretization of (4.2) can be written as

(4.7)
d

dt
Qij(t) = Lij(Q(t)) +

dA

dt
Qe(x) − A(t)

Area(Pij)

∫
∂Pij

∇Qe(x) · ννν dL,

where the area used to compute both Lij(Q) and the source term is computed using
the bilinear approximation given in section 3.3. We compute the solution to time
Tfinal = 0.2 using a time step Δt = Δξ = Δη.

Errors at T = Tfinal at each grid point are computed by comparing our computed
solution to the exact solution evaluated at the primal points. This error is given by

(4.8) eij(T ) = QN
ij −A(T ) Qe(xij).

We compute the 1-norm and inf-norm of the grid function eij as

(4.9) ‖eij(T )‖1= 1

Total Area

∑
i,j

|eij(T )| Area(Pij)

and

(4.10) ‖eij(T )‖∞= max
i,j
|eij(T )|,

where the total area is the surface area of the disk, hemisphere, or sphere.

4.1. Errors on the disk, hemisphere, and sphere. In this section, we show
convergence rates for the disk, the hemisphere, and the sphere. While our choice of
artificial solution allows us to test more general mappings, we choose to focus on these
three to demonstrate the accuracy of our boundary conditions for the disk and hemi-
sphere, and the accuracy for the boundary conditions for handling the discontinuities
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Fig. 4.1. The top set of plots show the initial conditions and final solution used to test conver-
gence of the present numerical scheme for solving a general parabolic equation with source term on
the disk map. The plot at the top left shows the initial distribution of randomly placed Gaussians in
(4.4), and the top right plot shows the solution at time Tfinal = 0.2. The solution was computed on
a 128× 128 grid. The bottom set of plots show convergence rates for the solution on the disk. The
bottom left plot shows the rates for the scheme in which no special averaging was used to obtain dual
cell values in diagonal cells. The bottom right-hand plot shows the convergence rate if the averaging
described in (3.34) is used. The solid circles and crosses are the errors for the solution computed
using the initial conditions shown in the top panels. The scattered “x” and “+”s are the errors
obtained when these initial conditions are rotated, with respect to the underlying mesh, through ar-
bitrary angles about the origin. The solid black lines are the best-fit lines through the errors shown
by the solid symbols. For the left plot the convergence rates are 0.92 for the inf-norm and 1.18 for
the 1-norm. For the right plot, the convergence rates are 1.79 for the inf-norm and 1.96 for the
1-norm. See Tables 4.1 and 4.2 for a subset of the values shown in these plots.

along the equator of our sphere mapping. We expect that applying our discretiza-
tion and boundary condition to more general smooth mappings should lead to results
similar to those we show here.

For the convergence test, we choose the wk’s and the θk’s in (4.4) and (4.5)
randomly. For the disk, we set K = 8 (i.e., we distribute eight Gaussians over the
unit disk); for the hemisphere, we set K = 15; and for the sphere, we set K = 23. To
obtain the convergence rate for a particular mapping, we fix the random placement
of Gaussians for a series of 12 grids ranging in size from My = 8 to My = 512. The
initial conditions for the particular random solution chosen are shown in Figures 4.1,
4.2, and 4.3. In those figures, we also show the solution at time Tfinal = 0.2, the
time at which we compute the errors. For the time step required by the RKC solver,
we choose Δt = Δξ. For the disk and hemisphere grids, we impose flux boundary
conditions consistent with our artificial solution.
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Fig. 4.2. Initial conditions, final solution, and convergence rates for the hemisphere example.
The convergence rates for the scheme in which no special averaging was used in the diagonal cells
(bottom left plot) is 0.75 for the inf-norm and 1.15 for the 1-norm. When diagonal averaging was
used, the convergence rates are 1.93 for the inf-norm and 1.98 for the 1-norm. See Figure 4.1 for
a detailed description of each plot, and Tables 4.1 and 4.2 for a subset of the values shown in these
plots.

In Figures 4.1, 4.2, and 4.3, we show the errors computed at our final time Tfinal =
0.2 using initial conditions described above. We also present a subset of our error
results in Tables 4.1 and 4.2. The convergence rates are computed as the best-fit
line through errors on the five grids in the range [128, 512], the range we believe
exhibits the asymptotic behavior of the numerical scheme. To see the effects of the
mesh on these errors, we also compute the errors that result when we rotate the initial
conditions through a random angle about the z-axis for the disk and hemisphere grids,
or through an arbitrary axis through the center of the sphere grid. These errors are
shown on the same plots as the convergence results described above.

In all three convergence plots, we see that our scheme, when used with the mod-
ifications we describe for the disk, hemisphere, and sphere, is nearly second order in
the 1-norm (1.96, 1.98, and 1.98 for the disk, hemisphere, and sphere, respectively).
The inf-norms are slightly less than second order (1.79, 1.93, and 1.92, respectively).
Moreover, we see that the magnitude of the error is relatively insensitive to the lo-
cation of the solution relative to the underlying mesh. The errors obtained using
rotated initial conditions do not show much variation, suggesting that the presence
of the near-triangular cells on the diagonals does not have significant impact on the
errors.

Finally, to see the importance of taking into account the metric discontinuities
when computing vertex values, we also compute solutions without the modifications
we described to account for these discontinuities. For the disk and hemisphere grids,
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Fig. 4.3. Initial conditions, final solution and convergence rates for the sphere example. The
convergence rates for the scheme in which no special averaging was used for dual cells along the
equator (bottom left plot) are 1.00 for the inf-norm and 1.11 for the 1-norm. For the right plot, the
convergence rates are 1.92 for the inf-norm and 1.98 for the 1-norm. See Figure 4.1 for a detailed
description of each plot and Tables 4.1 and 4.2 for a subset of values shown in these plots.

we consider the effects of omitting the modification given in (3.34). For the sphere
grid, we consider only the effect of omitting the internal boundary conditions described
in section 3.1.4. From the plots in which we omit the diagonal averaging and the
equator modification, we see that the solutions are only first order. These results
are consistent with the theoretical results presented in [8] for anisotropic diffusion
problems with discontinuities.

The second order accuracy of the hyperbolic solver for smooth solutions of the
advection equation on the sphere was confirmed in [11]. Accuracy studies for the
shallow water equations on the sphere can be found in [12].

4.2. Efficiency of the RKC solver. The numerical method we describe here
for solving the parabolic equation on the disk, hemisphere, and sphere relies on the
fact that we can efficiently update the solution using the explicit RKC time stepping
scheme. To assess the efficiency of this scheme for our problem, we compared it
with forward Euler and the TR-BDF2 scheme, an implicit one-step two-stage L-
stable scheme based on a hybrid of the trapezoidal rule and a second order backwards
differentiation formula [33]. To measure the efficiency of each of the three update
methods, we tracked the number of function calls required for each time stepping
scheme to reach a fixed time Tfinal = 0.2. All of the simulations were done on the
sphere example.
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Table 4.1

1-norm errors for the disk, hemisphere, and sphere solutions shown in Figures 4.1, 4.2, and
4.3. The convergence rates between successive grids are shown in parenthesis. The errors shown
here are a subset of those shown in Figures 4.1, 4.2, and 4.3, with the O(h) solutions corresponding
to the left plots in these figures, and the O(h2) plots corresponding to the right convergence plots in
these figures.

‖e(T )‖1 Disk Hemisphere Sphere

My O(h) O(h2) O(h) O(h2) O(h) O(h2)

64 3.30e-4 2.25e-4 7.32e-4 5.55e-4 7.66e-4 4.58e-4

(32/64) (1.64) (1.87) (1.67) (1.89) (1.50) (1.90)

128 1.19e-4 5.90e-5 2.69e-4 1.44e-4 3.05e-4 1.19e-4

(64/128) (1.47) (1.93) (1.44) (1.95) (1.32) (1.94)

256 4.95e-5 1.51e-5 1.16e-4 3.67e-5 1.36e-4 3.01e-5

(128/256) (1.27) (1.97) (1.21) (1.97) (1.17) (1.98)

512 2.29e-5 3.90e-6 5.48e-5 9.24e-6 6.50e-5 7.58e-6

(256/512) (1.11) (1.95) (1.08) (1.99) (1.07) (1.99)

Table 4.2

Inf-norm errors for the disk, hemisphere, and sphere solutions shown in Figures 4.1, 4.2, and
4.3. Notation as in Table 4.1.

‖e(T )‖∞ Disk Hemisphere Sphere

My O(h) O(h2) O(h) O(h2) O(h) O(h2)

64 5.35e-3 2.32e-3 6.78e-3 2.32e-3 6.36e-3 2.65e-3

(32/64) (0.95) (1.66) (0.92) (1.83) (0.89) (1.74)

128 2.77e-3 6.92e-4 3.55e-3 6.13e-4 3.21e-3 7.68e-4

(64/128) (0.95) (1.75) (0.93) (1.92) (0.99) (1.79)

256 1.42e-3 1.98e-4 2.06e-3 1.60e-4 1.60e-3 2.05e-4

(128/256) (0.96) (1.81) (0.79) (1.94) (1.00) (1.90)

512 7.89e-4 5.81e-5 1.24e-3 4.19e-5 8.00e-4 5.34e-5

(256/512) (0.85) (1.77) (0.73) (1.93) (1.00) (1.94)

The time step chosen for each scheme depended on the stability requirements of
the scheme. Hence, for forward Euler, we used Δtfe = 0.1Δξ2, and for the RKC solver
and the implicit scheme, we used Δt = Δξ. We ran the simulation on grid sizes ranging
from Mx = 16 to Mx = 1024, and for each method we tracked how many function
calls were needed to reach Tfinal = 0.2. For the explicit time stepping schemes, a
“function call” involves those steps outlined in the right-hand-side algorithm. For the
implicit solver, we modify this routine slightly so that it is a suitable matrix-vector
multiply for BICG-stab, the iterative method we used to solve the two linear systems
appearing in the TR-BDF method. All three time stepping schemes are second order,
and for a given grid all three schemes produce essentially the same 1-norm error.

In Figure 4.4, we show the results of these simulations and see that for coarse
grids (i.e., Mx < 100) the RKC solver required many more function calls than either
forward Euler or the TR-BDF. This may be partially explained by the fact that we
used the same absolute and relative tolerances (required parameters for the RKC
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Fig. 4.4. Efficiency of the forward Euler, RKC, and implicit TR-BDF scheme for the sphere
example. Each curve plots the number of function calls verses grid size in the x direction for the
sphere. The labeled vertical lines correspond to calculations on a 200×100 sphere grid (approximately
2700 function calls needed for both the RKC solver and the implicit solver) and on a 400× 200 grid
(approximately 4800 function calls needed for the RKC solver verses 6300 for the implicit solver).

solver) for all grids. On coarse grids, these tolerances may have been too strict for
the level of grid resolution, and so the RKC solver had to perform many more steps
to achieve the desired level of accuracy.

Once the number of grid points in the x direction exceeded roughly 200 (i.e.,
Mx > 200), the RKC solver required far fewer function calls than either of the other
two schemes. For example, on the 400 × 200 grid, the RKC solver required about
4800 function calls, whereas TR-BDF required about 6300, and forward Euler about
20000. We conclude that the RKC solver is an attractive time stepping approach for
our spatial discretization and is superior not only to the standard explicit approach,
but to implicit solvers as well.

5. Applications.

5.1. Chemotaxis in a petri dish. Chemotaxis is an interesting example of
pattern formation that can be observed for bacteria. We refer to Murray [41, Chapter
5] and Tyson and coworkers [54, 55] for detailed analytical and numerical investiga-
tions of models that are based on experimental studies by Budrene and Berg [9, 10].
A key property of many bacteria is that in the presence of certain chemicals (chemoat-
tractants), they move preferentially towards higher concentration of the chemical [41].
Here we restrict our consideration to simulations of a simplified nondimensionalized
model [41, section 5.8], whose numerical discretization already contains all the basic
components needed in more complex models.

Numerical simulations for chemotaxis models appearing in the literature have
been typically carried out on rectangular domains with periodic or no-flux bound-
ary conditions [55, 13]. This geometry is obviously chosen because it simplifies the
construction of numerical schemes. By using our disk grids along with the method
outlined in section 3.2, we can perform simulations which more closely resemble the
results of experiments carried out in a circular petri dish.

The mathematical model is a system of PDEs of mixed type containing compo-
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nents that model transport, diffusion, and reactions and is given by

∂u

∂t
= du∇2u− α∇ ·

(( ∇v
(1 + v)2

)
u

)
+ ρu(δ − u),

∂v

∂t
= ∇2v + βu2 − uv.

(5.1)

The variables u and v (which depend on position and time) describe concentrations
of cell density and chemoattractant, respectively. Diffusion terms model the random
motion of each component. The chemotaxis term (the second term on the right-hand
side of the first equation in (5.1)) can be viewed as an advection term. It models
a directed motion of the cell density u in response to a concentration gradient of
v. Reaction terms model the interaction of the different components, e.g., growth of
cells, release of chemoattractant, or consumption of nutrients.

In this model we have the free parameters α, β, δ, ρ, and du. Depending on the
values of these parameters, one can observe different patterns, either concentric rings
or spotted rings. For the simulations we perform here, we use fixed parameter values

du = 0.25, β = 0.2, δ = 20, ρ = 0.01

and set the parameter value α to either α = 2.25 (continuous rings) or α = 5 (spotted
rings). We set the radius of the petri dish to R = 15

√
2. For our simulations, we

initialize the bacteria distribution by computing mesh cell averages of a function which
is 1 inside a circle of radius 0.5, and 0 outside this circle. The initial distribution of
bacteria is set to these cell-averaged values. Initially, there is no chemoattractant
present.

In Figure 5.1 we show results obtained by solving (5.1) for the above choice of
parameter values. We made two sets of simulations, one on our disk grids, described
in section 2 and shown in Figure 2.1, and one on the optimized smooth grid, also
shown in Figure 2.1. Both grids are 150 × 150. We use our algorithm directly on
the smooth grid, since the computational domain is again a single logically Cartesian
grid, and we do not require the analytic mapping. For the smooth grid, we assume
that there are no metric discontinuities. We show numerical results for both striped
and spotted patterns on both grids at a fixed time T = 75.

The numerical results show that the radial symmetry of the solution is well ap-
proximated even on our relatively coarse grid. Furthermore, we see little difference
in the results on our disk grid and those on the smooth grid, suggesting that our al-
gorithm and grids are robust, despite the presence of metric discontinuities. Finally,
the boundary conditions are not adversely affecting the solution, unlike boundary
conditions imposed on the boundaries of rectangular domains.

5.2. Turing patterns on general curved surfaces. Reaction-diffusion equa-
tions arise in a large variety of mathematical models describing pattern formation for
biological applications [41, 40, 38, 4]. Most results reported in the literature discuss
pattern formation on flat two-dimensional surfaces. The few efforts in the biology
community to simulate patterns on curved surfaces have been for very simple sur-
faces such as cones or spheres [44, 56]. The solution techniques presented for these
simple shapes all rely on knowledge of the parameterization, making it difficult to
extend those methods to more general surfaces. To demonstrate that our diffusion
scheme can easily solve problems on general smooth surfaces, we present the results
of calculations of Turing patterns on the supershape presented in section 2.3.
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Fig. 5.1. Formation of concentric rings of stripes (middle) or spots (bottom) for chemotaxis in
a petri dish computed on a 150 × 150 grid. The solutions in the left column were computed on the
grid at the top left, and those in the right column were computed using the smooth optimized grid
on the right. For each solution, the u species is shown at time t = 75.

We consider Turing models with two interacting species u and v using the model
equations from [5, 56] which have the form

∂u

∂t
= Dδ∇2u+ αu

(
1− τ1v

2
)
+ v(1 − τ2u),

∂v

∂t
= δ∇2v + βv

(
1 +

ατ1
β

uv

)
+ u(γ + τ2v),

(5.2)

where (u, v) = (0, 0) is a unique spatially uniform steady state for γ = −α. Turing
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Fig. 5.2. Spot and stripe patterns computed on 200 × 200 grids. Parameter values used for
the spots in (5.2): δ = 0.0045, D = 0.516, τ1 = 0.02, τ2 = 0.2, α = 0.899, β = −0.91, γ = −α.
Parameter values used for the stripes in (5.2): δ = 0.0021, D = 0.516, τ1 = 3.5, τ2 = 0, α = 0.899,
β = −0.91, γ = −α.

showed that for certain parameter values the steady state was linearly stable in the
absence of diffusion but unstable in the presence of diffusion. This diffusion-driven
instability leads to the formation of different patterns, including striped and spotted
patterns.

For our calculations, we solve the above coupled system of parabolic equations
on two different supershapes—one with five symmetric arms and one with six. To
initialize the simulations, we initialized u and v with random values between −1/2
and 1/2. On the physical boundaries of the supershape, we imposed no-flux boundary
conditions. We ran the simulation until a steady state solution was reached. The
results of the calculations on each supershape are shown in Figure 5.2. The left plot
shows particular regularity, especially with respect to the location of spots at the
tips of the supershape arms. In the right plot, we see the significant effect that the
boundary conditions have on the resulting pattern. The interaction between the no-
flux boundary conditions and the nonconstant curvature of the surface appear to be
constraining the steady state solution in such a way that the striped pattern exhibits
breaks or defects.

6. Conclusions. We have described a finite volume discretization for parabolic
problems on smooth surfaces parameterized using a quadrilateral grid. The standard
version of the algorithm is based on an update of cell centered values (i.e., average
values on primal cells) and an averaging procedure to calculate vertex values (i.e.,
average values on dual mesh cells) and can be applied to general smooth or piecewise
smooth grids.

We have in particular considered grids for the disk and the sphere, which were
introduced in [12]. While these quadrilateral grids have some valuable properties, the
mapping is nonsmooth in some regions. In order to retain second order accuracy for
the approximation of parabolic problems, we have introduced a suitable calculation of
dual values. Also, we implemented general Robin boundary conditions. We provided
numerical evidence for the second order convergence of our scheme for the solution to
parabolic test problems on a disk, hemisphere, and sphere grid. We also showed that
our method works quite well for simulating chemotaxis in a petri dish and reaction-
diffusion on a general surface mesh.

While we demonstrated our diffusion algorithm for the sphere grids that we intro-
duced in [12], our method should extend quite naturally to other parameterizations
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of the sphere. In particular, there is increasing interest in the atmospheric commu-
nity in the cubed sphere grids introduced by Sadorny [47] (see also [45]) in place of
latitude-longitude grids. The cubed sphere grid is also piecewise smooth, and so the
techniques introduced here for preserving second order accuracy should work equally
well on that grid.

Finally, we hope that the solution technique presented here will appeal to com-
putational biologists interested in simulating pattern formation on general surfaces.
It would be especially interesting to reproduce the patterns on insect wings and fish
described in [35, 5, 6]. To aid in this and other research efforts, our code will be made
available to interested researchers.

Appendix A. Connection to the “cotan” formula. Here, we discuss the
connection between our approximation in (3.27) and the “cotan” formula, widely
used in the graphics and geometric-aided design communities for approximating the
Laplace–Beltrami operator on triangular meshes.

Fig. A.1. Flat triangular mesh showing a dual cell (shaded polygonal cell) over which one can
approximate the Laplacian at the vertex point x0. The right plot shows the angles that appear in the
cotan formula, a widely used approximation to the Laplace–Beltrami operator on triangular surface
meshes.

In practice, the cotan formula is viewed as an approximation to the surface Lapla-
cian at vertices of a triangular mesh. However, it can also be viewed as a finite volume
discretization over a dual mesh cell, such as the one shown by the shaded area in Fig-
ure A.1 [18, 57, 26]. Under the assumption that we have Delaunay triangularization
in which all triangles are acute, the circumcenter of each triangle is interior to the
triangle and so can be chosen as primal node for that triangle. Adapting the flux for-
mula we derived in (3.26) to the mesh shown in Figure A.1, we express the outgoing
normal flux at edge [x1, x2] as

(A.1)

∫
[x1,x2]

∂q

∂n
dL ≈ |x1 − x2|

|x̂0 − x̂2| (q(x̂2)− q(x̂0))

since θ = π/2. For the flat mesh shown in Figure A.1, it is easy to show that the
ratioof these lengths reduces to

(A.2)
|x1 − x2|
|x̂0 − x̂2| =

1

2
(cotα0,2 + cotβ0,2) ,
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where α0,2 and β0,2 are the angles at vertices x̂1 and x̂3, respectively, shown in Figure
A.1(right). Constructing fluxes at each edge of the dual cell and summing them up
leads to the cotan formula for the integral of the Laplacian over the dual mesh cell
shown in Figure A.1. This formula is given by

(A.3)

∫
D0

∇2q dA ≈
6∑

j=1

1

2
(cot(α0,j) + cot(β0,j)) (q(x̂j)− q(x̂0)) .

The cotan formula for a vertex x̂i on a general triangular mesh is given by

(A.4)

∫
Di

∇2q dA ≈
∑

j∈N(i)

1

2
(cot(αij) + cot(βij)) (q(x̂j)− q(x̂i)) ,

where N(i) is the set of vertices in a one-ring neighborhood around x̂i.

Appendix B. Connection to other schemes for flat unstructured meshes.
For flat manifolds, the approximation to the Laplacian in (3.27) is essentially the same
as that described by Hermeline and others for general unstructured meshes [27, 19, 15].
To see the connection between our scheme and the one presented by Hermeline in [27],
we define unit tangent vectors τττp and τττd at the right edge of the primal cell Pij as

(B.1) τττp :=
ti+1/2,j

|Si+1/2,j | , τττd :=
t̂i+1/2,j

|Ŝi+1/2,j |
.

For flat, polygonal meshes, the normal vector ννν to the right edge of Pij is unique and
can be written as

(B.2) ννν = aτττd + bτττp.

From this expression for the normal, we can obtain an approximation to the integral
of the flux over a straight edge as

(B.3)

∫
Si+1/2,j

∇q · ννν dL = a

∫
Si+1/2,j

∇q · τττd dL+ b

∫
Si+1/2,j

∇q · τττp dL

≈ a
|Si+1/2,j |
|Ŝi+1/2,j |

Δqi+1/2,j + b Δq̂i+1/2,j .

To determine coefficients a and b, we construct the linear system

(B.4)

(
ννν · τττd
ννν · τττp

)
=

(
1 cos(θ)

cos(θ) 1

)(
a
b

)
=

(
cos(φ)

0

)
,

where φ = π/2 − θ is the angle between τττd and ννν and θ is the angle defined as in
(3.25). Replacing cos(φ) in (B.4) with sin(θ) and solving for a and b, we get

(B.5) ννν = csc(θ)τττd − cot(θ)τττp,

from which we can recover our normal flux approximation in (3.26). Making the
substitution cos(θ) = sin(φ) leads to

(B.6) ννν = sec(φ)τττd − tan(φ)τττp,

from which we obtain exactly Hermeline’s flux approximation, used in [27] for polyg-
onal, flat meshes.
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