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We describe a method for solving the two-dimensional Navier–Stokes equations
in irregular physical domains. Our method is based on an underlying uniform
Cartesian grid and second-order finite-difference/finite-volume discretizations of the
streamfunction-vorticity equations. Geometry representing stationary solid obstacles
in the flow domain is embedded in the Cartesian grid and special discretizations near
the embedded boundary ensure the accuracy of the solution in the cut cells. Along
the embedded boundary, we determine a distribution of vorticity sources needed to
impose the no-slip flow conditions. This distribution appears as a right-hand-side
term in the discretized fluid equations, and so we can use fast solvers to solve the
linear systems that arise. To handle the advective terms, we use the high-resolution
algorithms in CLAWPACK. We show that our Stokes solver is second-order accurate
for steady state solutions and that our full Navier–Stokes solver is between first- and
second-order accurate and reproduces results from well-studied benchmark problems
in viscous fluid flow. Finally, we demonstrate the robustness of our code on flow in
a complex domain. c⃝ 2002 Elsevier Science (USA)
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difference; Cartesian grid; embedded boundary; computational fluid dynamics.

1. INTRODUCTION

In this paper, we describe a method for solving the two-dimensional incompressible
Navier–Stokes equations in irregular physical domains. Our method is based on an underly-
ing uniform Cartesian grid and second-order finite-difference/finite-volume discretizations
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of the streamfunction-vorticity equations. Geometry representing stationary solid obstacles
in the flow domain is embedded in the Cartesian grid and special discretizations near the
embedded boundary ensure the accuracy of the solution in the cut cells.

The use of Cartesian meshes for solving problems with complex geometry has become
quite widespread in the past decade. A key reason for this is that the cost associated with
generating the Cartesian mesh is negligible compared with that required by body-fitted or
unstructured finite-element meshes. This computational savings becomes especially pro-
nounced when solving problems with moving geometry. In these problems body-fitted or
finite-element meshes must be regenerated at each time step, whereas the Cartesian grid
remains fixed relative to the moving geometry. Another reason is that one can often make
use of fast solvers when discretizations are based on the standard stencils on an underlying
Cartesian mesh.

Despite the popularity of Cartesian grid methods, however, relatively few such methods
exist for viscous incompressible flow problems in irregular geometry. One approach that
is commonly used in the bio-fluids’ community is Peskin’s immersed boundary method
[39]. In this method, singular forces distributed along an elastic membrane immersed in a
fluid are represented discretely with model delta functions. These delta functions spread
the force exerted by the elastic membrane to neighboring grid nodes of the Cartesian mesh.
Because these forces only appear as source terms in the fluid equations, fast solvers can be
used for the numerical solution of these equations. This method has been used in a variety
of problems, including modeling the flow of blood in the heart [38–43], aquatic locomotion
[17], blood clotting [18–20], and wave motion in the cochlea [5, 6]. The method in its
original form is limited to first order, although Cortez and Minion [11] have developed a
higher order immersed boundary method known as the blob projection method.

Recently, Ye and coworkers describe a Cartesian grid algorithm based on the projection
method [53]. Their algorithm uses a finite-volume discretization of the momentum equations
and a compact interpolation scheme near the embedded boundary to achieve second-order
accuracy. Their method is formally second-order accurate, even at the embedded boundaries,
but they must resort to iterative methods with appropriate preconditioners to solve the
resulting large, sparse nonsymmetric linear systems that arise from their treatment of the
boundary.

Other Cartesian grid methods for incompressible flow include the projection method
for the Euler equations described by Almgren and coauthors [1], volume-of-fluid methods
for multiphase flows described by Puckett and coworkers [44], and work by Unverdi and
Tryggvason [49]. The work by Unverdi and Tryggvason is an example of the immersed
boundary method applied to multiphase flows and has led to some very impressive simula-
tions of complex multiphase flow. Johansen and Colella have developed fully conservative,
finite-volume methods for solving elliptic and parabolic equations on Cartesian grids with
embedded boundaries [22]. In [23], Johansen extends these ideas to problems involving
viscous fluid flow.

Our algorithm is designed in the spirit of the immersed boundary method. Along the
embedded boundary, we determine a distribution of sources needed to impose the no-
normal and no-tangential flow conditions. This distribution appears as a right-hand-side
term in the discretized fluid equations and so we can use fast solvers to solve the linear
systems that arise. Unlike the immersed boundary method, however, we do not attempt
to model discrete delta functions directly. Instead, we incorporate jump conditions into
the discretization of the equations, thereby obtaining boundary terms at grid cells near the
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embedded boundary. These boundary terms are derived in a way that guarantees formally
a second-order convergence rate.

Our approach is also related to an integral equation approach in that we determine the
correct distribution of sources needed to impose boundary conditions by solving a small,
dense linear system at each time step. Then in a manner described by Mayo [32, 33],
we spread the singular sources to the grid and solve the elliptic and parabolic equa-
tions using fast Poisson solvers. In this sense, our approach is also related to the ca-
pacitance matrix method, described by Proskurowski and Widlund [45] and Buzbee and
coworkers [8].

To handle the advective terms, we use the high-resolution algorithms in CLAWPACK [25],
a software package based on the wave propagation algorithms of LeVeque [26]. Irregular
boundary cells are handled using capacity form differencing, and the small cell problem is
handled by modifying the capacity function in a manner described in [10].

The structure of the paper is as follows. In Section 1.1, we discuss the streamfunction-
vorticity formulation of the Navier–Stokes equations and our fractional step approach
to solving them. In Section 2, we introduce some basic notation that we use through-
out the paper. In Section 2.1, we describe our finite-difference Stokes solver, and then in
Section 2.2, we discuss our finite-volume scheme for handling the advective terms. Finally
in Section 3, we look at several test problems which establish the accuracy of our method,
as well as show that we reproduce results from some well-studied benchmark problems in
viscous fluid flow. Finally, we demonstrate that our algorithm can be used to solve problems
in a complex domain.

1.1. The Streamfunction-Vorticity Formulation

In this paper, we solve the incompressible Navier–Stokes equations in streamfunction-
vorticity formulation. In a two-dimensional, Mbodies-ply connected domain with inclusions
! j , j = 1, . . . Mbodies, the streamfunction-vorticity equations can be written as

ωt + (u⃗ · ∇)ω = ν∇2ω, ∇2ψ = −ω,

u = ψy,

v = −ψx

(1)

subject to

ψ = ψ̄ j

ψn = 0
∫

∂! j
ωn ds = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

on ∂! j , j = 1, . . . Mbodies, (2)

where u⃗(x, y, t) ≡ (u(x, y, t), v(x, y, t)) is the velocity vector whose components are hor-
izontal and vertical fluid velocities, respectively, ψ(x, y, t) is the streamfunction, and ω(x,

y, t) = vx − uy is the scalar vorticity. The kinematic viscosity ν is assumed to be constant.
On the solid boundaries, the streamfunctionψ must satisfy two boundary conditions: one of
Dirichlet type corresponding to a no-normal flow condition and one of Neumann type cor-
responding to a no-tangential flow condition. No boundary conditions are explicitly given
for ω.

In multiply connected domains, we generally do not know the constant value ψ̄ j that
the streamfunction takes on the boundary of inclusion ! j . In our formulation, we use an
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integral condition on the flux of vorticity at the boundaries to close the system with respect
to these unknowns. This condition ensures that the pressure remains single valued. To see
this, we consider an equation for the tangential momentum given in terms of normal and
tangential velocity components (uτ , un) as

(uτ )t +
(

uτ
∂

∂τ
+ un

∂

∂n

)

uτ = −∂p
∂τ

+ ν
∂ω

∂n
, (3)

where we have used the divergence condition ux + vy = 0 and the definition of the vorticity
ω = vx − uy to get the term ν∂ω/∂n. At the boundary of solid, stationary inclusion! j , the
velocity uτ = un = 0, and so the above equation reduces to

∂p
∂τ

= ν
∂ω

∂n
. (4)

Integrating this along the boundary ∂! j , we obtain the expression

p(s) = p0 + ν

∫ s

s0

∂ω

∂n
ds (5)

for the boundary pressure p(s), where the constant p0 ≡ p(s0) is some reference pressure
on the boundary. Since the pressure is a single-valued function, our integral expression in
(1) follows immediately.

In Fig. 1, we show a sketch of a typical region in which we solve the equations given
in (1).

FIG. 1. Sketch of typical domain in which we solve the streamfunction-vorticity equations. The shaded regions
represent stationary, rigid bodies, and the unshaded regions are the fluid domain. At the boundaries between solid
and liquid regions, we must impose no-slip conditions. The irregular domain is embedded in a uniform Cartesian
mesh.
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1.2. Temporal Discretization

To discretize the equations given in (1) in time, we use a fractional step approach and split
the advective terms from the elliptic and parabolic terms. In what follows, we use 't for
the time step and the superscript n to indicate a solution at time level tn ≡ n't . Subscript
n is reserved for differentiation with respect to a normal direction. Here, we discretize in
time only and leave the details of the spatial discretizations for the following sections.

The basic method we describe is a hybrid finite-volume/finite-difference method. At the
beginning of each time step, we assume that we have solutions ωn , un , and vn . The first step
in our fractional step scheme is the advective step, given by

ω∗ − ωn

't
= −(u⃗n · ∇)ωn, (6)

which we solve to obtain an intermediate solution ω∗. In this step, we track cell averages of
vorticity and use the high-resolution wave propagation algorithms in the CLAWPACK [25]
to update the vorticity field.

We follow this step with a Stokes flow step given by

ωn+1 − ω∗

't
= ν∇2ωn+1,

∇2ψn+1 = −ωn+1,

ψn+1 = ψ̄n+1
j

ψn+1
n = 0

∫

∂! j
ωn+1

n ds = 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

on ∂! j , j = 1, . . . Mbodies.

(7)

Here, we treat the vorticity and streamfunction as cell-centered pointwise values and dis-
cretize the equations using the immersed interface method, a finite-difference method for
solving elliptic and parabolic equations in embedded regions. Since we are mainly inter-
ested in the spatial accuracy of our scheme, we illustrate our method for the backward
Euler discretization of the diffusion equation, but our method can be easily adapted to other
discretizations.

Finally, velocities at the new time level are computed from ψn+1:

un+1 = ψn+1
y , vn+1 = −ψn+1

x , (8)

where the velocities are cell edge-averaged quantities.

2. THE NUMERICAL METHOD

The region in which we model the fluid flow is called the flow domain and the region
occupied by the solid objects is the no-flow domain. The rectangular region consisting of both
the flow domain and the no-flow domain is the computational domain and is denoted by R.
We establish a uniform Cartesian mesh on R with grid spacing'x and'y. For convenience,
we assume that 'x = 'y ≡ h. Cell centers are labeled as points (xi , y j ), i = 1, . . . Nx ,
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FIG. 2. Labeling scheme used for the Cartesian grid.

j = 1, . . . Ny where xi = (i − 1/2)'x and y j = ( j − 1/2)'y. Grid line intersections (or
grid nodes) are labeled using fractional indices. For example, the grid node in the lower
left corner of the cell centered at (xi , y j ) is labeled (xi−1/2, y j−1/2). Figure 2 illustrates the
labeling scheme.

For notational convenience, we describe our algorithm for a single embedded object !.
The boundary of! is given by ∂! ≡ ( and is parameterized using functions (X (s), Y (s)),
where s ∈ [0, S] and X (0) = X (S) and Y (0) = Y (S). The value ψ of on ( is given by ψ̄
and is in general unknown.

When we make reference to jumps in a solution across the boundary (, we assume
that the flow domain is the positive region, denoted here as !+, and the no-flow domain
is the negative region, denoted using !−. Using this convention, a jump in a quantity q
across an interface is defined as [[q]] ≡ q+(α) − q−(α), where q+(α) is the limiting value
of q as we approach a boundary point α from the flow domain, q−(α) is the limiting
value as we approach the boundary from the no-flow domain, and α is a point on the
interface.

Using the above notation, we illustrate our discretization scheme in Fig. 3.

2.1. Solving the Stokes Equations

In this section, we describe how we use the immersed interface method, introduced by
LeVeque and Li [28], to discretize the Stokes equations given in (7). We save the discussion
of the advective step for Section 2.2.

The coupled system of equations given in (7) can be rewritten as

∇2ω + λ∗ω = λ∗ωn,

∇2ψ = −ω,
(9)

where λ∗ = −1/ν't and the boundary conditions on ψ are those given in (7). From here
on, we drop the superscript n + 1 on quantities at time level tn+1.
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FIG. 3. Location of vorticity, streamfunction, and velocity values. Values are all cell centered, even in irregular
cells. Velocities are edge-averaged values. The shaded region is the no-flow domain.

To handle both the parabolic and elliptic equations above, we describe our method in
terms of the general elliptic equation given by

∇2φ + λφ = f, (10)

where λ ≤ 0.
A key feature of our algorithm is the discretization of the equation in (10). To discretize

this equation, we use the standard 5-point stencil, modified by a correction term near the
boundary. In general, the discrete equation will have the form

φi, j+1 + φi−1, j + φi+1, j + φi, j−1 − (4 − λh2)φi, j

h2
+ Dλ[φ](xi , y j ) = fi j , (11)

where the correction term Dλ[φ](xi , y j ) is nonzero only near the boundary. This correction
term, which depends on λ, is computed using the immersed interface method [9, 28, 52]
and is used to impose both the boundary conditions for the streamfunction and the singular
sources for the vorticity equation. Because of the way in which it is constructed, this
correction term leads to a scheme which is first order near the boundary and second order
away from the boundary. This is sufficient for second-order accuracy globally. Boundary
conditions on the rectangular computational domain are imposed in the standard way. We
solve this system of equations by treating the correction term as a source term and using a
fast Poisson solver.

2.1.1. Determining Correction Term Dλ[φ](xi , y j )

We now describe in some detail how Dλ[φ](xi , y j ) is computed. We define irregular
points as those grid points (xi , y j ) at which the standard 5-point stencil straddles the inter-
face. All other grid points are called regular points. Associated with each grid point (regu-
lar or irregular) is an interface point, denoted in Cartesian coordinates as (X (P((xi , y j )),
Y (P((xi , y j ))), where the function s = P((x, y) associates a point (X (s), Y (s)) on ( with
(x, y) ∈ R. For example, P((x, y) may be defined so that (X (s), Y (s)) is the closest point
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FIG. 4. Dark circles are irregular grid points, defined as those points at which a standard 5-point stencil
(shown by empty circles) straddles the boundary of the flow domain. Irregular points can be either in the flow
domain or in the no-flow domain. The black squares associated with each irregular point are the interface points
assigned to each irregular grid point.

to (x, y) on the interface. We only require that P((x, y) be defined in such a way that the
distance between an irregular point and its associated interface point is O(h). For regu-
lar points, the definition of P((x, y) turns out to be irrelevant, since the correction term
D[φ](xi , y j ) is zero for those points. In Fig. 4, we show a typical arrangement of irregular
points, relative to an embedded interface.

In general, the correction term has the form

Dλ[[φ]](xi , y j ) ≡ dλ,1i j [[φ]] + dλ,2i j [[φn]] + dλ,3i j [[φs]] + dλ,4i j [[φss]]

+ dλ,5i j [[(φn)s]] + dλ,6i j [[∇2φ + λφ]], (12)

where [[·]] = (·)+ − (·)− denotes a jump in the indicated quantity at the point (X (si j ), Y (si j )),
where si j ≡ P((xi , y j ), on the interface. The derivative d(·)/ds is differentiation in the di-
rection tangent to the boundary and d(·)/dn is differentiation in the normal direction.
The entries in the coefficient vector dλi j ∈ R

6×1 depend on λ, the location of the point
(X (si j ), Y (si j )) relative to the grid, and the parameterization of the curve at si j . The proce-
dure for computing these coefficients is given in the Appendix, Section A.1.2.1. Also in the
Appendix, in Section A.1.1, we illustrate on a one-dimensional problem how the correction
term Dλ[φ](xi , y j ) is derived. The reader may want to look at Section A.1.1 now.

To compute Dλ[ω] and Dλ[ψ], we must have the necessary jump conditions in ω and ψ .
The jump conditions for vorticity are given in terms of the unknowns w and v and are

[[ω]] = w, [[ωn]] = v, [[∇2ω + λ∗ω]] = λ∗[[ωn]],

[[ωs]] = ws, [[(ωn)s]] = vs = λ∗wn,

[[ωss]] = wss,

(13)

where we have assumed that w and v are differentiable functions of the interface parameter s.
To attach a physical meaning to these jump quantities, we make the assumption that the
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vorticity inside ! is identically zero. With this assumption, then, vorticity jumps at the
boundary are just the boundary values of the vorticity.

To determine jumps inψ andψn , we use physical conditions to make convenient choices
of values ψ in the no-flow domain. First, we want ψ to be constant inside our object so that
we get zero velocities there when we difference ψ using the definitions of u and v given in
(1). This gives usψ−

x = ψ−
y = 0, orψ−

n = 0 at solid boundaries. Using this with the no-slip
condition ψ+

n = 0 gives us the jump condition [[ψn]] = 0. Second, we would like ψ to be
continuous across the boundary so we do not introduce any unphysical singularities into
the velocity field at the boundary. This gives us ψ+ = ψ− at the boundary, or [[ψ]] = 0. To
get the last jump used in (12), we use the differential equation for ψ . In summary, all the
necessary jumps are given by

[[ψ]] = 0, [[ψn]] = 0, [[∇2ψ]] = −[[ω]],

[[ψs]] = 0, [[(ψn)s]] = 0 = −w,

[[ψss]] = 0,

(14)

where w = [[ω]] is the only unknown.
Mayo [32, 33] first introduced the idea of incorporating jumps into the discretization of

the Laplacian. In her approach, Mayo computes the solution to an integral equation for the
distribution of sources needed to impose given boundary conditions on an irregular domain.
She then uses the density to evaluate the integral to obtain the solution to the original Laplace
equation at the irregular points defined above. These values can be obtained quite accurately,
even though they are near the interface where the kernel of the integral operator becomes
unbounded. To obtain the solution at all mesh points on a two-dimensional Cartesian mesh
in which the boundary is embedded, she solves

∇2
h u = ∇2

h uirr, (15)

where ∇2
h is the discrete 5-point Laplacian, and uirr is equal to the solution (computed from

the integral equation) at irregular points and zero everywhere else. This right-hand-side
term is used to correct for the fact that in general, the solution as computed from the integral
equation will not be smooth across the boundary. This approach has several advantages:
(i) the integral equation can be solved very fast using a fast multipole method [36], (ii)
fast Poisson solvers can be used to obtain the solution at a large number of mesh points,
thus avoiding the need to evaluate the integral at all desired mesh points, and (iii) it is
particularly well suited to exterior problems. The idea also extends very naturally to two-
and three-dimensional Poisson equations and the biharmonic equation [34–36].

In the immersed interface method, the method described here, we do not solve an integral
equation to obtain a density function, but rather solve for jumps in the solution directly.
This method was first described by LeVeque and Li [28] for solving elliptic problems with
discontinuous coefficients or singular sources along an interface. Later, these ideas were
extended to boundary value problems in [9, 51, 52]. The present work most closely follows
that of Yang [52].

2.1.2. Determining Unknown Jumps [[ω]] = w and [[ωn]] = v

We now describe how we can set up a linear system to solve for the unknown jumps
[[ω]] = w and [[ωn]] = v. To do this, we choose a set of equally spaced control points along the
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interface at which to solve for unknown jump conditions and then interpolate from these
points to all the interface points when necessary. We denote such a set of control points
(X (sk), Y (sk)), k = 1, . . . M and impose the given boundary conditions at these points only.
In general, the number of control points will be much smaller than the number of irregular
points.

In the following few definitions, we use the following notational conventions. For v ∈
R

M1 , we define

(v)k ≡ vT ek, (16)

where ek is the kth column of the M × M identity matrix. Similarly, for G ∈ R
Nx Ny×1, we

define

(G)i j ≡ GT epi j , (17)

where epi j is the pth
i j column in an Nx Ny × Nx Ny identity matrix. The subscript pi j ∈ Z

takes the (i, j) index of an entry in an Nx × Ny grid and converts it to a unique index in an
Nx Ny × 1 vector. For example, we could have pi j ≡ ( j − 1)Nx + i .

DEFINITION. Let g(s) be a smooth function on (, and let g ∈ R
M×1 be the vector of

values {g(sk)}M
k=1 defined on the control points sk on (. The discrete operators Ii j ∈ R

1×M ,
Ik ∈ R

1×M , 's ∈ R
M×M , and 'ss ∈ R

M×M are defined in terms of their action on g as

Ii j g ≈ g(si j ), Ikg = g(sk), ('sg)k ≈ gs(sk), ('ssg)k ≈ gss(sk), (18)

where si j ≡ P((xi , y j ). The operator Ii j interpolates between control points to interface
points (X (si j ), Y (si j )). The second operator Ik selects a value from the vector g; it is simply
the kth row in the M × M identity matrix. The third and fourth operators map the vector
g to a second vector whose entries are the derivatives of g. By composing these operators,
we can obtain first and second derivatives at interface points using Ii j'sg ≈ gs(si j ) and
Ii j'ssg ≈ gss(si j ).

All of the above operators assume an underlying interpolant through the points {gk}M
k=1.

Some possible interpolants are the cubic spline and trigonometric polynomials. Since we
are presently only handling closed boundaries (e.g., X (s) and Y (s) are periodic functions),
we use trigonometric polynomials. Interpolation and differentiation is straightforward and
at least when we need Ik'sg and Ik'ssg, we can make use of the fast Fourier transform.
Yang [52] used a standard 3-point stencil to obtain derivatives at control points (which in her
case were also the interface points). Le Veque and Li [27] use cubic splines for interpolation
and differentiation. Both of these methods yield reliable results as well.

DEFINITION. The matrices Dλ
w, Dλ

v , andDλ
r , all in R

Nx Ny×M , are defined in terms of their
actions on a vector g ∈ R

M×1 and are given by
(

Dλ
wg

)

i j ≡ Ii j
{

dλ,1i j IM + dλ,3i j 's + dλ,4i j 'ss
}

g,

(

Dλ
v g

)

i j ≡ Ii j
{

dλ,2i j IM + dλ,5i j 's
}

g, (19)
(

Dλ
r g

)

i j ≡ Ii j
{

dλ,6i j IM
}

g,

where the coefficients dλ,p
i j , p = 1, . . . 6 are those in (12), and the matrix IM ∈ R

M×M is
the M × M identity matrix. We use the superscript λ on these matrices to indicate that
they depend on λ (through the coefficients dλ,p

i j ); the subscripts w, v, and r , however, do
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not indicate a dependence on the jumps w, v, or r , but merely serve to indicate how these
matrices are applied to the different types of jump conditions.

These matrices act to spread the function g(s), which is defined only along the interface
to the neighboring grid points. If we define

g(s) ≡ [[φ(X (s), Y (s))]],

gn(s) ≡ [[φn(X (s), Y (s))]], (20)

g'(s) ≡ [[∇2φ(X (s), Y (s)) + λφ(X (s), Y (s))]]

and corresponding vectors g, gn , and g', we can relate the matrices Dλ
w, Dλ

v , and Dλ
r to the

correction term Dλ[φ] as follows:

Dλ[φ](xi , y j ) ≈
(

Dλ
wg + Dλ

v gn + Dλ
r g'

)

i j . (21)

This is an approximation rather than an exact equality because the quantities gs , gss , and
g(si j ) are only approximated (using (18)) rather than determined exactly.

For our present purposes, we use the spreading matrices to spread the jumps w(s) and
v(s) defined in (13) to the grid. To do so, it is convenient to define vectors w, v, and r.

DEFINITION. The vectors w, v, and r, all in R
M×1, are defined element-wise as

wk = [[ω(X (sk), Y (sk))]],

vk = [[ωn(X (sk), Y (sk))]],
(22)

rk = λ∗[[ωn(X (sk), Y (sk))]]

= λ∗wn
k .

We use the matrices Dλ∗

w , Dλ∗

v , and Dλ∗

r , which are those defined above, with λ = λ∗ ≡
−1/ν't .

For the elliptic equation for the streamfunction, we need to compute a correction term
D0[ψ], which is defined as in (12), with λ = 0. Since the only nonzero jumps in ψ are in
∇2ψ , we can simplify this expression, and we get

D0[ψ](xi , y j ) = d0,6
i j [[∇2ψ]]

= d0,6
i j [[−ω]] (23)

= −d0,6
i j Ii j w.

The only spreading matrix we need for the streamfunction is then given by D0
r , which is

just matrix Dλ
r with λ = 0.

Using this notation we can now write out a discrete system of equations to solve for the
Stokes equations. This linear system is given by

Aλ
∗
ω + Dλ∗

w w + Dλ∗

v v + Dλ∗

r wn = λ∗ωn,

A0ψ − D0
r w = −ω.

(24)

The matrix Aλ ∈ R
Nx Ny×Nx Ny is the matrix corresponding to the operator (∇2 + λ) and ψ,

ω,ωn ∈ R
Nx Ny×1 are vectors of approximations to the grid values ψ(xi , y j ) and ω(xi , y j ).

These equations are the immersed interface discretization of the equations given in (9).
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We cannot yet solve (24) for ψ and ω because we still have the 2M unknowns in vectors
w and v. Furthermore, we have not incorporated any boundary conditions into the system
of equations. To close the system of equations with respect to these 2M unknowns, we
discretize each of the two boundary conditions on ψ given in (2) at the M control points
along the interface. These discretized boundary conditions have the form

1
∑

m=−1

1
∑

ℓ=−1

αm,ℓ
k ψik+m, jk+ℓ + C[ψ](xik , y jk ) = ψ̄,

(25)
1

∑

m=−1

1
∑

ℓ=−1

γ m,ℓ
k ψik+m, jk+ℓ + Cn[ψ](xik , y jk ) = 0,

where (xik , y jk ) is a grid point in the flow domain within a distance h of the control point
(X (sk), Y (sk)). The weights αℓ,mk and γ ℓ,mk are given in Section A.1.3. The correction terms
C[ψ](x, y) and Cn[ψ](x, y) are nonzero only if at least one of the nine points used in the
stencil is in the no-flow domain. Since we are interpolating to a point on the boundary (the
control point), at least one of the nine points will likely be in the no-flow domain, and so
the correction terms C[ψ] and Cn[ψ] will usually be nonzero.

Just as in (11), these correction terms can be written in terms of jumps and are given by

C[ψ](xik , y jk) = c1
k [[ψ]] + c2

k [[ψn]] + c3
k [[ψs]] + c4

k [[ψss]] + c5
k [[(ψn)s]] + c6

k [[∇2ψ]],

Cn[ψ](xik , y jk) = c1
n,k[[ψ]] + c2

n,k[[ψn]] + c3
n,k[[ψs]] + c4

n,k[[ψss]] (26)

+ c5
n,k[[(ψn)s]] + c6

n,k[[∇2ψ]],

where the jumps are evaluated at the control point (X (sk), Y (sk)). Using the jumps given
in (14), we can simplify these expressions and write

C[ψ](xik , y jk ) = −c6
kwk,

Cn[ψ](xik , y jk ) = −c6
n,kwk .

(27)

These coefficients are given in Section A.1.3.
To write these boundary conditions in matrix form, we introduce two definitions.

DEFINITION. The matrices I and In are both in R
M×Nx Ny and are given by

(Iψ)k =
1

∑

m=−1

1
∑

ℓ=−1

αℓ,mk ψik+ℓ, j−k+m, (Inψ)k =
1

∑

m=−1

1
∑

ℓ=−1

γ ℓ,mk ψik+ℓ, j−k+m . (28)

DEFINITION. The matrices Ir and In,r are both in R
M×M and are given by

(Ir w)k = c6
kwk, (Ir,nw)k = c6

n,kwk . (29)

We can now write the equations in (25) as

Iψ − Ir w = ψ̄,
(30)

Inψ − In,r w = 0.

Finally, to close the system with respect to the unknown ψ̄ , we discretize the integral
condition in (1) by making use of the fact that v ≡ ω+

n , since it is assumed that ω−
n ≡ 0.
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To approximate the integral on a closed boundary, we take advantage of the fact that the
control points are equally spaced along the interface and approximate the integral condition
using a trapazoidal rule as

∫

(

∂ω

∂n
ds ≈

M
∑

k=1

vk's = ξ T v, (31)

where ξ ∈ R
M×1 and ξk = 1, k = 1, . . . M. Of course, this may be replaced with other

quadrature rules if the points are not equally spaced, or if the boundary is not a closed
curve. For a recent discussion of high-order quadrature rules that use essentially equally
spaced points, see [2].

In summary, we now have the following set of discrete equations (and their continuous
counterparts) to solve for w, v, and ψ̄ .

ωt = ν∇2ω → Aλ
∗
ω + Dλ∗

w w + Dλ∗

v v + Dλ∗

r w n = λ∗ωn,

∇2ψ = −ω → A0ψ − D0
r w = −ω,

ψ = ψ̄ → Iψ − Ir w = ψ̄,
(32)

ψn = 0 → Inψ − In,r w = 0,
∫

(

ωn ds = 0 → ξ T v = 0.

Eliminatingψ and ω from the above set of equations, we obtain a (2M + 1) × (2M + 1)

dense linear system for w, v, and ψ̄ which we solve at each time step. This linear system is
given by

⎛

⎜

⎝

I Gw − Ir I Gv −1

InGw − In,r InGv 0

0 ξ T 0

⎞

⎟

⎠

⎛

⎝

w
v
ψ̄

⎞

⎠ =

⎛

⎜

⎜

⎝

I (A0)−1(Aλ
∗
)−1

(

λ∗ωn − Dλ∗

r wn
)

I n(A0)−1(Aλ
∗
)−1

(

λ∗ωn − Dλ∗
r wn

)

0

⎞

⎟

⎟

⎠

, (33)

where

Gw ≡ (A0)−1(Aλ
∗
)−1 Dλ∗

w ,
(34)

Gv ≡ (A0)−1(Aλ
∗
)−1 Dλ∗

v .

The kth column in the arrays Gw and Gv , both in R
Nx Ny×M , can be viewed as the response

in ψ to a unit jump in either ω or ωn at control point sk . For convenience, we write the
matrix system in (33) as S J = R, where S ∈ R

(2M+1)×(2M+1), and J, R ∈ R
(2M+1)×1.

To solve the complete Stokes equations, we form the matrix S once, factor it, and use
it at each successive time step to determine the correction term needed to solve for the
streamfunction and vorticity. To form the matrix, we set up a matrix–vector multiply whose
arguments are the unknowns w, v, and ψ̄ . We call this matrix–vector multiply (2M + 1)

times, each time passing in a column of the (2M + 1) × (2M + 1) identity matrix. The
result of the matrix–vector multiply is a column in the matrix S. We then factor this matrix
into its LU factors and store the factorization. At each time step, we only need to form the
right-hand-side R, backsolve the system LU J = R to obtain the jumps w, v, and unknown
ψ̄, and then solve for ω and ψ using (24). The algorithm for solving the Stokes equations
is summarized in Fig. 5.
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FIG. 5. Time stepping algorithm for solving the Stokes equations.

One key advantage of our approach over, for example, the approach taken by Ye and
coworkers [53] is that our approach can make use of fast Poisson solvers to solve the
elliptic and diffusion equations and does not rely on preconditioners to obtain optimal
efficiency.

2.2. Computing the Velocities from the Streamfunction ψ

The vorticity transport equation given in (6) is discretized in a finite-volume setting
using the high-resolution algorithms available in CLAWPACK [25]. The details of the al-
gorithm we use for handling the partial cells cut by the embedded geometry are de-
scribed in [10]. Here, we only briefly describe how we compute the velocities from the
streamfunction ψ .

The average velocities Ui±1/2, j and Vi, j±1/2 along each edge are easily computed by
differencing a streamfunctionψ at the corners. We compute the average horizontal velocity
across the left edge of each mesh cell as

Ui−1/2, j = 1
'y

∫ y j+1/2

y j−1/2

ψy(x, y) dy

(35)
= 1
'y

[

ψ
(

xi−1/2, y j+1/2
)

− ψ
(

xi−1/2, y j−1/2
)]
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and the average vertical velocity along the bottom edge of each mesh cell as

Vi, j−1/2 = − 1
'x

∫ xi+1/2

xi−1/2

ψx (x, y) dx

(36)
= − 1

'x

[

ψ
(

xi+1/2, y j−1/2
)

− ψ
(

xi−1/2, y j−1/2
)]

.

Sinceψ is assumed constant inside the bodies and continuous at the boundaries, the average
velocity over an edge that is entirely inside the body is identically zero. This is exactly the
result we would obtain for velocities computed from the above formulas. At an edge which
cuts the boundary, we also have that Ui±1/2, j and Vi, j±1/2 are averaged velocities over the
entire edge. This can be deduced by breaking up the integral above into two pieces; one
inside the body and one outside the body.

The corner values of the streamfunction needed to compute these velocities are obtained
using an interpolation procedure described in Section A.1.2.3. These velocities are then
passed to the advection algorithm in CLAWPACK and used to compute fluxes needed to
update the vorticity cell averages.

We can maintain stability only if we take time steps which do not violate the CFL
condition given by

max
i, j

(∣

∣

∣

∣

Ui±1/2't
κi j'x

∣

∣

∣

∣

,

∣

∣

∣

∣

Vi±1/2't
κi j'y

∣

∣

∣

∣

)

≤ 1, (37)

where κi j , 0 ≤ κi j ≤ 1, is the fraction of a mesh cell (xi , y j ) in the flow domain. We refer
to this fraction as the capacity of the mesh cell. From (37), it is clear that arbitrarily small
cells (i.e., cells for which κi j ≪ 1) can place severe restrictions on the size of the time step
needed to maintain stability. To avoid this severe time restriction, we increase the capacity
of very small triangular cells to ensure that their volume is at least O(h). This approach is
described in [10].

2.3. Solving the Full Streamfunction-Vorticity Equations

We now have all the components we need to solve the full streamfunction-vorticity
equations. In order to put everything together, however, we must explain the manner in
which we alternate between the cell-averaged value obtained at the end of the advection
step and the pointwise value we obtained at the end of the finite-difference Stokes flow
step.

To describe our method, we consider three steps in the fractional step scheme: an advection
step, followed by a diffusion step, followed by another advection step. These three steps
are as follows:

Step 1, ω∗ = ωn −'t (u⃗ · ∇)ωn;
Step 2, ∇2ωn+1 + λ∗ωn+1 = λ∗ω∗; (38)

Step 3, ω∗∗ = ωn+1 −'t (u⃗ · ∇)ωn+1.

The question at hand is how to interpret ω∗ in the second step, and how to interpret ωn+1 in
the third step. In the advection step, the discrete valueωi j is a cell average, approximating the
average value of ω over the cell centered at (xi , y j ). In the diffusion step, this value is a
pointwise value, approximating ω(xi , y j ).
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We explain our approach in each of the three types of cells: full cells, empty cells, and
partial cells. Here, as in (37), the capacity κi j of a mesh cell is the fraction of the cell in the
flow domain.

• Full cells (κi j = 1) and empty cells (κi j = 0): In these cells, a cell-averaged value of
ω will agree with a pointwise value to O(h2). For this reason, we use values ω∗

i j obtained
at the end of step 1 directly as a right-hand-side value in step 2. Also, after the diffusion
step, we can use ωn+1 directly as the right-hand-side in step 3.

• Partial cells (0 < κi j < 1): There are two types of partial cells to consider: those cells
in which the cell center is not covered by the body, and those in which the cell center is
covered by the body. In those cells in which the cell center is in the flow domain, we allow
ω∗ to be used directly as a right-hand-side value in step 2, and let ωn+1 be used as the
right-hand-side value in step 3. In these cells, the cell average and the pointwise value at
the centroid of the partial cell agree to O(h).

In a cell centered at (xi , y j ) whose center is covered by the body, the value of ω∗ will in
general be nonzero, since κi j > 0 in that cell. In these cells, we set the pointwise value
which is used as the right-hand-side in step 2 to zero. This zero pointwise value is the only
value that is consistent with the immersed interface method discretization of the diffusion
equation; inside the body, the vorticity is zero, since we have adopted the convention that
inside the body, we have ω− = 0.

In going from step 2 to step 3, we must recover a nonzero value of ωn+1. We do this
by extending smoothly the vorticity distribution to the cell center of the partial cell. The
extended pointwise value at the cell center (xi , y j ) is given to third order by

ω̃(xi , y j ) = e1
i j [[ω]] + e2

i j [[ωn]] + e3
i j [[ωs]] + e4

i j [[ωss]] + e5
i j [[(ωn)s]] + e6

i j [[∇2ω + λ∗ω]]

= e1
i jw + e2

i jv + e3
i jws + e4

i jwss + e5
i jvs + e6

i jλ
∗wn. (39)

FIG. 6. Algorithm for solving the streamfunction-vorticity equations.
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The jumps are all evaluated at (X (si ′ j ′), Y (si ′ j ′)), where si ′ j ′ = P((xi ′ , y j ′) for some point
(xi ′ , y j ′ ) in the flow domain for which |i − i ′| ≤ 1 and | j − j ′| ≤ 1. The coefficients ep

i j , p =
1, . . . 6 are computed using the formulas given in the Appendix, Section A.1.2.2. This value
agrees with a cell-averaged value of ω to O(h).

In summary, our proposed algorithm for solving the full Navier-Stokes equations is given
in Fig. 6.

3. NUMERICAL RESULTS

In this section, we validate our code by comparing our results to those obtained in other
benchmark studies. In the first example, we evaluate the accuracy of the Stokes solver code
by comparing it to the exact solution of Wannier [50]. In the second example, we compute
low Reynolds number flows in an infinite array of cylinders, compute forces on the cylinder,
and estimate a numerical rate of convergence for the proposed Navier–Stokes solver. In the
third example, we show that we can reproduce the well-known van Karman vortex street,
as well as flow patterns for steady flow past a cylinder. Finally we demonstrate that the
algorithm works well for problems involving more complicated geometry.

In the first three examples, we compute drag around a circular obstacle. In all three
examples, the drag is computed using the formula

Fx = rνρ
∫ 2π

0

(

−ω(θ) + r
∂ω(θ)

∂n

)

sin(θ) dθ, (40)

where r is the radius of the circular obstacle. To evaluate (40) from data computed at each
time step, we discretize the integral using the trapezoidal rule and use jump conditions
obtained at the control points sk, k = 1, . . . M . The discrete formula is given by

Fx = 2πrνρ
M

M
∑

k=1

(−wk + rvk) sin(θk), (41)

where θk is the angle that an outward-directed vector normal to ( at the interface point
(X (sk), Y (sk)) makes with the horizontal. In all of our computations, we set ρ = 1.

Software packages used. To solve the elliptic and parabolic equations arising in the
Stokes solver, we use the fast Poisson solver HSTCRT available in the FISHPACK library [47].
This particular routine is ideally suited to our purposes since it returns the solution to the
elliptic equation given in (10) at cell centers, but allows us to impose boundary conditions
on the computational domain at cell edges.

To solve the advection equation, we use CLAWPACK [25], a software package which im-
plements the fully conservative high-resolution wave propagation algorithms described by
LeVeque [26]. This requires a capacity function κi j , edge velocities Ui±1/2, j , Vi, j±1/2, and a
flux limiter choice, among other options. Boundary conditions on the computational domain
are imposed by setting values in a layer of ghost cells bordering the computational domain.
The use of a high-resolution algorithm for incompressible flow has several advantages.
First, the algorithms numerically conserve the advected quantities. While our scheme is
not conservative in the cut cells, we conserve vorticity in all full cells by using CLAWPACK.
Second, the use of flux limiters improves resolution near the boundary, where sharp jumps
in vorticity occur, and minimizes numerical diffusion in the flow regions away from the
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boundaries. In all of the examples involving advection, we use the monotonized-central
difference limiter, available as an option in CLAWPACK.

Choosing a time step. A current time step 'tcurr is chosen so that three competing
objectives are satisfied:

1. Time step 'tcurr should not violate the CFL condition given in (37) required for
stability of the advection scheme.

2. Time step'tcurr should not be too small or we will take more time steps than necessary,
thereby slowing down the progress of the simulation and introducing unnecessary numerical
diffusion into the solution.

3. Finally, we do not want to change the value of'tcurr too often, since whenever'tcurr

changes, we must re-form the matrix S in (33). This is a time-consuming process, and so
we want to do it as infrequently as possible.

With these constraints in mind, we choose a time step 'tnew from a time step 'tcfl and the
current time step 'tcurr according to the following strategy. Let

Wmax = max
i, j

{∣

∣

∣

∣

Ui±1/2, j

'x κi j

∣

∣

∣

∣

,

∣

∣

∣

∣

Vi, j±1/2

'y κi j

∣

∣

∣

∣

}

, (42)

where κi j is the modified capacity function described in [10]. Assume that 'tcfl satisfies

0 < α ≤ Wmax'tcfl < β ≤ 1 (43)

for parameters α and β. Then we choose 'tnew such that

'tnew =
{

'tcurr if 'tcurr ∈ [α'tcfl,'tcfl/β]

'tcfl otherwise.
(44)

The new 'tcurr is set to 'tnew. We typically choose Wmax'tcfl = 0.9, and α = 0.5 and
β = 0.95. It is easy to check that Wmax'tnew < 1 so that'tnew satisfies the CFL constraint.

3.1. Stokes Flow in an Annular Region

In this example, we solve the steady state Stokes equations for the infinite cylindrical
bearing and compare our computed solution to the analytic one given by Wannier [50]. In
this problem, one or both cylinders are allowed to rotate, thereby inducing a flow in the
region between the cylinders. Our flow domain is the annular region shown in Fig. 7. The
inner ring is centered at (0, 2.75) and has a radius r1 = 1 and the outer ring is centered at
(0, 3.25) and has radius r2 = 2. The eccentricity of the bearing (i.e., the distance between
the centers of the two circles) is given by e = 0.5.

The equations we solve to steady state are the Stokes equations given by

ωt = ν∇2ω,
(45)

∇2ψ = −ω,

subject to the boundary conditions ψ = ψn = 0 on the outer cylinder, and ψn = −1 on the
inner cylinder. The non-zero value on the inner cylinder corresponds to a counterclockwise
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FIG. 7. Sketch of the domain for the problem of Stokes flow in an annular region.

rotation speed of 1. The value of ψ on the inner cylinder is an unknown. The exact solution
for the streamfunction in this flow is given in [50] and is

ψ∗
W (x, y) = A log

(

x2 + (s + y)2

x2 + (s − y)2

)

+ By
s + y

x2 + (s + y)2
+ Cy

s − y
x2 + (s − y)2

+ Dy + E(x2 + y2 + s2) + Fy log
(

x2 + (s + y)2

x2 + (s − y)2

)

, (46)

where s is given by

s2 = 1
4e2

(r2 − r1 − e)(r2 − r1 + e)(r2 + r1 + e)(r2 + r1 − e) (47)

or s =
√

105/4 for the present geometry. The coefficients A, B, C, D, E, and F are given in
the Appendix, Section A.2. We set

ψW (x, y) ≡ ψ∗
W (x, y) − ψ∗

outer, (48)

where ψ∗
outer is the values of ψ∗

W on the outer ring. The shifted solution ψW is the one we
compare our numerical solution against.

We use the immersed interface method, as described in Section 2.1, to solve Eq. (45). In
Fig. 8, we show the results on a 120 × 120 grid.

To determine the order of accuracy of our solver, we solve the equations on several
different grids and compute the norm of the error in the streamfunction as

∥ψW − ψ∥p = ∥e∥p =
(

1
Area(R)

∑

i, j

|ei j |p'x'y
)1/p

, 1 ≤ p < ∞, (49)
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FIG. 8. Streamlines (left) and vorticity contours (right) of Wannier flow between two eccentric bearings. The
solution shown here was computed on a 120 × 120 grid.

where ei j is the error in the computed solution ψi j at grid point (xi , y j ) and is computed as

|ei j | ≡ |ψi j − ψW (xi , y j )|. (50)

The quantity Area(R) is the area of the computational domain. The ∞-norm is defined in
the standard way as

∥e∥∞ = max
i, j

|ei j |. (51)

The numerical solution was computed on a series of grids with mesh sizes hg for g =
1, . . . Ngrids, where hg+1 < hg . We assume that the error in our computed solution takes the
form

eg ≈ Ch p
g , (52)

where p is the convergence rate of the scheme. Taking the log of this expression leads to
the linear expression

log(eg) = p log(hg) + log(C). (53)

To determine the numerical convergence rate, we determine a least-squares fit to the data
(log(hg), log(eg)) to obtain slope of the best-fit line p and the constant log(C).

In Fig. 9, we plot the errors, on a series of grids, in the solution ψ , the value ψ̄ on the
inner cylinder, and the drag coefficient as computed using (41). In the first plot, the errors
in the solution converges at an estimated rate of 1.96, which is very nearly the expected
rate of 2. In the second plot in Fig. 9, we show convergence results for the computed drag
coefficient and flow rate. The exact value of the drag coefficient is given by

Fx = 8πνF, (54)
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FIG. 9. Convergence rates for the ∞-norm error in the computed streamfunction (left), and flow rate and drag
coefficient (right) for an eccentric bearing flow problem. The solid line is the best-fit line through the computed
errors. The convergence rates for these errors (given by the slope of best-fit lines) are 1.96 for the solution, 2.45
for the drag, and 1.99 for the flow rate.

where F is the coefficient used in (46). We compute Fx using the formula given in (41) and
compare our solution with the exact solution. We observe a convergence rate of 2.45. While
this is considerably higher than we expect, we note that the errors in the drag are larger
initially then for the solution, and so we would expect that if we went to finer and finer grids,
we would eventually see an asymptotic convergence rate closer to 2. In the second plot in
Fig. 9, we also plot the errors in the flow rate. In general, the flow rate is the difference
between the two values of ψ on each ring of the annulus. In our case, since the outer ring
has value 0, we have that the flow rate is equal to the value of the ψ on the inner ring. The
errors shown in the plot are the same order of magnitude as the error in the solution and
have a convergence rate of 1.99, as expected.

From this example, we conclude that our Stokes solver is performing quite well. Con-
vergence rates for the solution and important quantities on the boundary are all very close
to or larger than 2, as expected, and so we consider the Stokes solver a reliable component
in the solution of the full streamfunction-vorticity equations.

3.2. Flow in a Biperiodic Array

In the following two examples, we compute the flow in an infinite periodic array of
cylinders. In one case, we compute the force on a single cylinder at low Reynolds numbers
(Re < 10) and compare our results with asymptotic results obtained by various researchers.
In a second example, we compute the solution at a higher Reynolds number (Re = 25) on
a series of grids and obtain an estimated convergence rate for our proposed Navier–Stokes
solver. The purpose of these examples is to show that our code behaves quite reasonably
for low Reynolds number flows and in particular for flow through the types of arrays that
may appear in, for example, calculations in porous media and heat exchangers.

In both examples, we consider external flow in a unit square with periodic boundary
conditions in both the horizontal and the vertical directions. To vary the Reynolds number
for fixed cylinder size, we vary the viscosity parameter ν. In Fig. 10, we show an example
of the current geometrical setup.

The boundary conditions on ω in the computational domain are taken to be periodic in
both directions. For the streamfunction, we impose periodicity in the horizontal direction.
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FIG. 10. The grid containing a single shaded circle is a sketch of the computational domain for the biperiodic
array. Periodic boundary conditions are imposed on all four boundaries of the computational domain. Flow domain
is the region exterior to the shaded circles.

In the vertical direction, we require that

ψi, j = ψ̃ i, j + U0 y j , (55)

where U0 is the desired average velocity in the horizontal direction and ψ̃ i, j is the zero-
mean solution returned from HSTCRT, with periodic boundary conditions imposed in both
directions. In both examples, we advance the solution in time until a steady state is reached.

3.2.1. Force in a Biperiodic Array

For this problem, we compute the steady state fluid force (or drag) on the cylinder as a
function of solid fraction, φ. The solid fraction is taken to be the area of the cylinder in the
unit square. For all but the most dilute array (φ = 0.00625), the computations were done
on a unit square embedded with a 160 × 160 grid. For the most dilute array, we used a
320 × 320 grid. The number of control points was taken so that there were approximately
five grid points between control points. In Fig. 11, we show the streamlines and vorticity
contours for Re =

√
5 and φ = 0.2.

According to Mei and Auriault [37], the relationship between solid fraction, Reynolds
number, and force in a flow past a cylinder with fore–aft symmetry can be expressed as

D ≡ Fx

ρνU0
= k0(φ) + k2(φ)Re2, for Re ≪ 1, (56)

where the Reynolds number is based on the cylinder diameter and Fx is computed using
(41). The functional relationships for k0(φ) and k2(φ) are given by Koch and Ladd [24].

To establish that our algorithm produces data consistent with this model, we use a least-
squares fit to obtain the slope mφ and intercept bφ of the best-fit line through data (rφi , Fφ

i ),
where Fφ

i is the force computed at Reynolds number Re2 = rφi on a cylinder whose volume
fraction isφ. The independent values rφi are chosen so that rφi ∈ [0, 10]. We then compare the
slopes and intercepts obtained for a variety of volume fractions with asymptotic expressions
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FIG. 11. Streamlines and vorticity contours for flow in a biperiodic domain. The solution was computed on
one cylinder and plotted periodically. For this problem, we set Re =

√
5 and volume fraction φ = 0.2. Streamline

contour levels are 0 : 0.1 : 1 and 0.45 : 0.01 : 0.55. Vorticity contour levels are −16 : 1 : 16.

for k0(φ) and k2(φ) obtained by Sangani and Acrivos for dilute arrays [46] and Koch and
Ladd for concentrated arrays [24]. The results are plotted in Fig. 12.

From the plots in Fig. 12, we see that, qualitatively, we get excellent agreement for both
k0(φ) and k2(φ) with the asymptotic expressions in [46] and [24]. Quantitatively, the results
for k0(φ) appear to be much closer to the asymptotic expressions than do those for k2(φ).
We point out, however, that our agreement for k2(φ) is no worse than that produced by
Koch and Ladd [24] using a lattice Boltzman method.

We conclude from this numerical experiment that for low Reynolds number flows, our
results are in excellent agreement with the asymptotic results.

3.2.2. Numerical Convergence for Higher Reynolds Number Flows

Using the geometric setting described above, we test the numerical convergence of our
proposed scheme on a higher Reynolds number (Re = 25) flow. Since we do not have an

FIG. 12. Curve for intercept k0(φ) (left) and slope k2(φ) (right) of best-fit lines through forces computed
from the present algorithm. The open circles are data computed from the present algorithm and solid lines are
asymptotic expressions obtained from [24].
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FIG. 13. Contours of vorticity (left) and streamlines (right) of flow in a biperiodic domain at Re = 25. Vorticity
contours are −50 : 2 : 50, and streamline contours are −1 : 0.05 : 1 and 0.04 : 0.002 : 0.06. The dashed line is the
solution computed on a 50 × 50 grid, and the solid line is the solution computed on a 200 × 200 grid.

exact analytical solution to flow in a biperiodic array, we estimate an error in the solution
computed on a particular grid by taking the difference between the solution on that grid and
the solution computed on a grid with twice the resolution. Theoretically, this estimated error
should have the same order of convergence as an error computed using an exact analytical
solution. We then use these error estimates to compute an order of convergence, using the
method described in Eqs. (52) and (53).

In Fig. 13, we show the vorticity and streamline contours for the flow computed for this
problem. To visually assess the accuracy of our scheme, we plotted the contours computed
on two different grids, a 50 × 50 grid and a 200 × 200 grid, on top of one another. The plots
show very good agreement for the major features of the flow, including the recirculation
zones at both the front and the back of the cylinder.

Next, we establish estimates for the numerical convergence rate of the velocities and
streamfunction produced by the scheme. In Fig. 14, we plot the errors in these quantities and
show a best-fit line through these errors. We estimate the 2-norm order of convergence to be
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FIG. 14. Estimated errors (computed as the difference between the solutions computed on indicated grid (an
N × N grid) and a finer grid (a 2N × 2N grid) in the 2-norm (left) and the ∞-norm (right) in streamfunction ψ
and velocity for the biperiodic flow shown in Fig. 13.
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1.54 for the horizontal velocity, 1.64 for the vertical velocity, and 1.59 for the streamfunction.
These convergence rates are clearly better than first order; the fact that they are not closer
to second order may be due in part to the fact that high-resolution finite-volume schemes
do not generally yield second-order results in the presence of sharp discontinuities. In our
case, the vorticity has a sharp discontinuity at the boundary of the cylinder.

The ∞-norm order of convergence rates for the same quantities are 0.94, 0.71, and 1.84,
respectively. The fact that the velocity convergence rates are lower in the ∞-norm than
in the two norm is an indication that the largest errors are occurring on the boundary of
our embedded cylinder. An improved scheme for handling the approximation of advective
fluxes in the small cut cells may improve this convergence rate.

3.3. Flow Past a Cylinder

One classic, nontrivial two-dimensional problem for which there is a large pool of numeri-
cal and experimental results is the problem of calculating the flow around a circular cylinder.
We now compare the results obtained from our algorithm with those results published in
the literature.

In this problem, we have a circular cylinder embedded in an infinite domain. Flow in the
far-field is assumed to be the uniform flow given by u = U∞ for t > 0. For our computations,
we use a cylinder of radius r = 0.5, which is embedded in a 32 × 16 computational domain.
The cylinder is located near the inflow boundary at (8, 8). The computational mesh is
640 × 320. To represent the circular cylinder and the solution on the cylinder, we use 16
control points. To vary the Reynolds number Re = 2rU∞/ν, we hold the velocity fixed at
U∞ = 1 and vary ν.

On the boundaries of the computational domain, we impose homogeneous conditions on
ω and uniform flow conditions on the streamfunction. At the inflow boundary and the two
horizontal boundaries,ω in the ghost cells is set to 0. At the outflow boundary,ω in the ghost
cells is set equal to its neighboring value in the domain, i.e.,ω641, j = ω640, j . For the diffusion
equation, we set ωn = 0 on all four boundaries. For the streamfunction, we set ψ(0, y) =
U∞(y − 8) at the inflow boundary and ψ(x, 0) = −4U∞ and ψ(x, 16) = 4U∞ at the two
horizontal boundaries. These conditions are designed to match the far-field velocity at the
inflow boundary and two horizontal boundaries. At the outflow boundary, we set ψn = 0.

On the cylinder itself, we set ψ = ψ̄ = 0 for flow in the steady regimes (Re = 20 and
Re = 40). For the unsteady regimes (Re = 50, 100, 200), we allow the streamfunction to
vary on the cylinder and impose the zero net-flux of vorticity condition given in (1).

Our numerical results are divided into the three sections: a steady flow regime (Re = 20),
a transitional flow regime (Re = 40, 50), and an unsteady regime (Re = 100, 200). For the
steady flows corresponding to Re = 20 and Re = 40, we compute the length of the wake
bubble, the separation angle, and the drag coefficient. For the unsteady flows, we compute
the Strouhal number and report on the unsteady lift and drag in plots. We compare our
results for these quantities with those found in the experimental and numerical studies of
Tritton [48], Coutanceau and Bouard [12, 13], Dennis and Chang [14], and Fornberg [21].
In all of our plots, we plot the nondimensional quantities ω̃ = ωr/U∞ and ψ̄ = ψ/rU∞.

3.4. Steady Flow: Re = 20

In Fig. 16, we have plotted the streamlines and vorticity contours computed for Re = 20.
We compared our contours with the same contours in [21] and found very good agree-
ment. In Fig. 15, we show a close-up of the vorticity contours near the cylinder and see
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FIG. 15. Close-up of vorticity contours for Re = 20 (left) and Re = 40 (right). The two sets of contour levels
used are −4.6 : 0.2 : 4.6 and −0.5 : 0.025 : 0.5. The dotted line is the zero contour level.

FIG. 16. Contours of vorticity and streamfunction for Re = 20. Contours levels −5 : 0.2 : 5 are used in both
plots. Additional streamline contours are −0.1 : 0.01 : 0.1 and −0.01 : 0.001 : 0.01. Some of the streamline contours
have been removed for clarity. The dotted line is the zero contour in both plots.
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TABLE 1
Wake Bubble Length (L), Angle of Separation (θ), and Drag

Coefficient (CD) for Reynolds Numbers 20 and 40

Re = 20 Re = 40

L θ CD L θ CD

Tritton [48] — — 2.22 — — 1.48
Coutanceau and Bouard [12] 0.73 42.3◦ — 1.89 52.8◦ —
Fornberg [21] 0.91 — 2.00 2.24 — 1.50
Dennis and Chang [14] 0.94 43.7◦ 2.05 2.35 53.8◦ 1.52
Present 0.91 45.5◦ 2.19 2.18 54.2◦ 1.62

Note. Values from first two research groups listed are results from experiments;
second two are results of numerical computations.

that the recirculation zone behind the cylinder is very well captured in only a few grid
cells.

In Table 1, we see that the length of the wake bubble and the separation angle agree quite
well with that of Tritton, Coutanceau, and Fornberg. The drag coefficient Cd = Fx/ρU 2

∞r
is somewhat high, but this is probably due to the fact that our computational domain is
relatively small for this problem, given our computational boundary conditions for the
far-field boundary.

3.5. Transition Regime: Re = 40 and 50

Experimentally, the transition to an unstable wake occurs between Re = 40 and Re = 50
[12]. To see how our code behaves in this transition regime, we computed the vorticity
and streamlines for Reynolds numbers 40 and 50 to see if we can detect the onset of an
instability. While we do not expect to be able to exactly determine the transition Reynolds
number, we expect to detect the onset of an instability by Reynolds number 50.

In Fig. 17 and Fig. 18, we show the contours and streamlines for both Reynolds numbers.
The measured wake bubble length, separation angle, and drag coefficient for Re = 40 are
given in Table 1.

In Fig. 17 (Re = 40), we see that the two vortices in the streamline plot are perfectly
aligned, indicating that the flow is stable. Furthermore, the zero contour in the vorticity plot
is straight and lies exactly on the line dividing the top and bottom halves of the domain.
For Re = 50, we see that the situation is quite different. The vortices in the streamline
plot have begun to slide past one another, indicating the onset of vortex shedding, and the
zero-contour level has begun to warp. From these two plots, we conclude that our algorithm
is correctly capturing the transition from steady to unsteady flow. This behavior is in good
agreement with results reported elsewhere.

3.5.1. Unsteady Vortex Shedding: Re = 100 and 200

In this regime, our algorithm reproduces the classic oscillatory wake behind the cylinder.
Because our algorithm has slight asymmetries in its implementation details, we found that
we do not need to artificially perturb the flow field to initiate the unsteady behavior.

In Fig. 19, we show vorticity contours for both Re = 100 and 200. The characteristic
vortex shedding is clearly visible in both plots. In Fig. 20, we plot the time-dependent
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FIG. 17. Streamlines and vorticity contours for Re = 40. Contours levels shown for the streamlines are
−10 : 0.1 : 10 and −0.1 : 0.01 : 0.1. Contour levels for the vorticity are −5 : 0.2 : 5. The zero contour level in each
plot is shown with the dotted line.

FIG. 18. Streamlines and vorticity contours for Re = 50. Contours levels shown are the same as those in
Fig. 17.
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FIG. 19. Contours of vorticity for Re = 100 and 200. The contours shown in each plot are −2 : 0.1 : 2. The
dotted line is the zero contour level.

FIG. 20. Time-dependent lift and drag coefficients. (Top left) Drag, Re = 100; (Top right) drag, Re = 200;
(bottom left) lift, Re = 100; (bottom right) lift, Re = 200. Inset graphs show pressure and viscous components of
each coefficient.
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TABLE 2
Drag Coefficients for Re = 100 and Re = 200

Drag (CD) Re = 100 Re = 200

Belov et al. [3] — 1.19 ± 0.042
Braza et al. [7] 1.364 ± 0.015 1.40 ± 0.05
Liu et al. [30] 1.350 ± 0.012 1.31 ± 0.049
Present 1.330 ± 0.014 1.172 ± 0.058

Note. The values following the ± are the amplitude of
the oscillations.

behavior of the lift and drag coefficients, CD and CL . The drag coefficient is given by
Fx/ρU 2

∞r and the lift coefficient is Fy/ρU 2
∞r , where

Fy = −rρν
∫ 2π

0
(ω(θ) + rωn(θ)) cos(θ) dθ . (57)

The lift Fy is computed using jumps in a manner analogous to that for Fx . We also plot the
pressure and viscous components of the lift and drag coefficients. These components are
given by

CDp = νr
U 2

∞

∫ 2π

0
ωn(θ) sin(θ) dθ, CDv

= − ν

U 2
∞

∫ 2π

0
ω(θ) sin(θ) dθ,

(58)

CL p = − νr
U 2

∞

∫ 2π

0
ωn(θ) cos(θ) dθ, CLv

= − ν

U 2
∞

∫ 2π

0
ω(θ) cos(θ) dθ

and are also computed using jumps. These values are shown in insets in plots in Fig. 20 and
reported in Table 2 and Table 3. Generally, our results are well within the range of results
reported by other researchers.

For Re = 100, the total drag CD computed using our algorithm was very close to that
reported by Braza et al. [7]. Our value of CD = 1.330 ± 0.014 differs from that reported
by them by only about 2%. The lift values do not compare quite so favorably; our value
differed from theirs by about 20%.

The situation for Re = 200 is inconclusive, only because the values reported elsewhere
vary by as much as 15% from each other. We compared our viscous drag values with those
found in Belov et al. [3] and found very good agreement; our values differed from theirs by
about 1.5%. Our computed drag coefficient was about 16% lower than that it Braza et al.

TABLE 3
Lift Coefficients for Re = 100 and Re = 200

Lift (CL ) Re = 100 Re = 200

Belov [3] — ±0.64
Braza [7] ±0.25 ±0.75
Liu [30] ±0.339 ±0.69
Present ±0.298 ±0.668

Note. The values following the ± are the amplitude
of the oscillations.
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and 10% lower than the results given by Liu et al. [30]. Our lift coefficients were about 3%
higher than those in Belov et al. and about 3% lower than that of Liu et al. Our computed lift
was about 10% lower than that computed by Braza et al. In general, our computed viscous
drag coefficients were lower than those reported elsewhere, whereas our lift coefficients
were in the mid range of values reported elsewhere.

The only concern we had with our results for the Re = 200 case is the apparent vertical
asymmetry in the evolution of the drag coefficient. As the vortices shed, it appears that
the value of the drag is different depending on whether we are shedding positive vorticity
or negative vorticity. However, we computed the same flow on a finer grid and found that
the the asymmetry disappeared. From this, we concluded that our algorithm was behaving
properly in this regard.

To determine if we are getting the proper shedding frequency, we compute the nondimen-
sional shedding frequency, or Strouhal number, given by St = 2 f r/U∞. To compute the
dimensional frequency f we used the time evolution of the lift coefficient. We estimate a
nondimensional Strouhal number of about 0.175 for Re = 100 and 0.202 for Re = 200. By
comparison, Liu reports a value of St = 0.164 for Re = 100 and St = 0.192 for Re = 200.
For Re = 200, Belov reports a value of St = 0.193.

3.6. Flow in a Complex Domain

In this problem, we demonstrate our algorithm on a more complex, multiply connected
domain. We have a biperiodic domain with five rose-shaped obstacles embedded in it.
In Fig. 21, we show the results of this example. The Reynolds number for this example
is approximately 10, based on an average diameter of the roses. The average velocity in
the horizontal direction is U0 = 1 and is imposed using (55). The diffusion coefficient is
set to ν = 0.1. The computational domain is [0, 4] × [0, 4] with a 160 × 160 mesh. Each
geometric shape is described using the functions

x j (s) = ρ j (s) cos(2πs/M) + c1
j , y j (s) = ρ j (s) sin(2πs/M) + c2

j (59)

FIG. 21. Streamlines (left) and vorticity contours (right) for flow in complex domain.
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FIG. 22. Vorticity contours for flow in complex domain, computed on two different grids. The right plot
shows a portion of the left plot. The solid line is the solution computed on a 160 × 160 grid; the dashed line is the
solution computed on a 320 × 320 grid. Vorticity contours shown are −65 : 2.5 : 100.

for s ∈ [0, 63], j = 1, . . . 5. The functions ρ j (s) are given by

ρ j (s) = a j cos(2πp j s) + r j , (60)

where the constants a j , p j , r j , c1
j , and c2

j are given in the Appendix. To represent the
interfaces, we use 64 control points on each rose shape.

In Fig. 21, we plot the results of this example. We also computed the streamfunction and
vorticity on a finer grid and show the plots of vorticity of these two plots in Fig. 22. We
see that even though the structure of the flow is quite complicated, we get good agreement
between the two plots, even in the most complicated regions.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a finite-difference/finite-volume algorithm for solving
the streamfunction-vorticity equations in irregular geometry. We showed that our Stokes
solver is second-order accurate and that the full solver produced results which were in
good agreement with other experimental and numerical studies of benchmark viscous flow
problems. With our algorithm, we met two objectives. First, we have developed a direct
solver which makes use of existing fast Poisson solvers. The advantage of this approach is
that the work per time step does not vary with Reynolds number. Second, we have shown
how high-resolution algorithms for advection can be coupled with our Stokes solver. A
key idea in our work is that we appeal directly to the notion of vorticity generation and
determine singular sources of vorticity at solid boundaries, rather than attempt to impose
boundary conditions on the vorticity.

In the future, we plan to extend the algorithm described here to moving geometry and
problems involving immersed elastic boundaries. In order to handle moving geometry we
will need to develop faster methods for determining the linear system that gives us the
singular distribution of vorticity at boundaries. Forming the full matrix at each time step
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will be prohibitively expensive, and so we propose two alternative approaches to forming
the full matrix S in (33). One option is to take advantage of the fact that the linear system is
expressed in terms of a matrix–vector multiply, and so we can solve the system iteratively,
using, for example, GMRES. This could potentially be quite successful, since at each time
step we have a good initial guess to the source distribution. Each matrix-vector multiply,
however, will still require an application of the fast Poisson solver. Another approach is
to replace our general elliptic equation in (10) with an equivalent integral equation. The
integral equation leads to a very well-conditioned linear system and the corresponding
matrix–vector multiply only requires O(M) operations.

Because Cartesian grid methods are easily made adaptive, it may be interesting to
consider how adaptive mesh refinement may be applied to our current algorithm. We
have already shown in [10] that our capacity form differencing used to solve the trans-
port equation is easily adapted using AMRCLAW [4]. To solve the elliptic and parabolic
equations in an adaptive framework, we must replace our current fast Poisson solver with
one that works in the adaptive setting. One obvious choice is a multigrid solver. Another
choice is the multipole based solver developed by Ethridge and Greengard and described
in [16].

To extend our approach to higher order, we would need to use a higher order Poisson
solver (see [16] for example), and include higher order jumps and derivatives along the
boundary. This will place higher demands on the smoothness of the boundaries, but for
problems in which the higher order boundary derivatives are easily obtained, this approach
should be quite straightforward to implement. Another advantage of our approach is that
problems with piecewise constant coefficients (viscosity for example) are easily handled,
as are variable and discontinuous coefficients. In fact, it was these sorts of problems that
motivated the original immersed interface method [28].

Finally, there is the question of extending our code to three dimensions. One possibility is
to solve the three-dimensional streamfunction-vorticity equations. These equations are not
typically solved in three dimensions, because they involve solving for three components of
ω and of the vector potential ψ . Additionally, there is a gauge freedom associated with the
three-dimensional streamfunction-vorticity equations which must be resolved by imposing
divergence conditions on ω and ψ , in addition to those on velocity. Also, determining the
correct boundary conditions on the components of ψ is more complicated in three dimen-
sions than in two. Nonetheless, Weinan and Liu [15] propose a 3d vorticity-vector potential
formulation on nonstaggered grids that looks very promising. An alternative formulation
is the projection methods of [1]. Because our methods for computing the singular sources
and imposing boundary conditions on embedded boundaries are not specific to the equa-
tions being solved, we can apply our finite-difference scheme to any of these methods. For
one example of how the immersed interface method can be applied to a primitive variable
formulation of the Navier–Stokes equations, see [29].

APPENDIX

A.1. Derivation of Coefficients for the Immersed Interface Method

Here we provide formulas for the coefficients needed to construct the matrix S in (33)
and for extending the solution ω to the no-flow domain and interpolating ψ to grid nodes.
To motivate the derivations, we consider a one-dimensional example.
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A.1.1. A One-Dimensional Example

Suppose we have two functions u+(x) and u−(x), both of which are analytic in an
interval R = [Rℓ, Rr ] of the real line. Let the point α ∈ R divide the interval into a left
region !− = [Rℓ,α] and a right region !+ = (α, Rr ]. We define a function u(x) as

u(x) =
{

u−(x) if x ∈ !−

u+(x) if x ∈ !+.
(A.1)

The function u(x) will in general be discontinuous at α and have discontinuous derivatives
there. These discontinuities can be described in terms of jumps [[u]] ≡ u+(α) − u−(α),

[[ux ]] ≡ u+
x (α) − u−

x (α), [[uxx ]] ≡ uxx (α) − u−
xx (α), and so forth. We would like to be able

to use a standard 3-point stencil to approximate uxx (x) at a point x near the point α.
This, of course, will yield an inaccurate result unless we account for the fact that u(x) is
discontinuous at α. But we could apply a 3-point stencil approximation to u+(x) or u−(x)

and obtain accurate approximations to uxx (x). With this in mind, our goal is to recover u+

and u− from u. We do this by using jump conditions.
To recover u+(x) and u−(x), we use the fact that we can expand these functions about α

and write their difference in terms of jumps. We define

C(x) ≡ u+(x) − u−(x) = [[u]] + [[ux ]](x − α) + 1
2

[[uxx ]](x − α)2 + O(|x − α|3), (A.2)

where the jumps are evaluated at α. Using C(x), we define a function ũ as

ũ(x; ξ) = u(x + ξ) + σ (x; ξ)C(x + ξ), (A.3)

where

σ (x; ξ) =

⎧

⎪

⎨

⎪

⎩

1 if x ∈ !+ and x + ξ ∈ !−

−1 if x ∈ !− and x + ξ ∈ !+

0 otherwise.
(A.4)

It is easy to show that

ũ(x; ξ) =
{

u+(x + ξ) if x ∈ !+

u−(x + ξ) if x ∈ !−.
(A.5)

Now, instead of numerically differentiating u(x), we difference ũ(x). For example, we can
approximate uxx at a point x near α using a standard 3-point stencil. Doing so, we get

uxx (x) ≈ ũ(x; h) − 2ũ(x; 0) + ũ(x; −h)

h2

= u(x + h) + σ (x; h)C(x + h) − 2u(x) + u(x − h) + σ (x; −h)C(x − h)

h2

= u(x + h) − 2u(x) + u(x − h)

h2
+ σ (x; h)C(x + h) + σ (x; −h)C(x − h)

h2
.

(A.6)
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This final expression holds regardless of whether x is in !+ or in !−. The first term in
the last equation is the usual 3-point stencil approximation to uxx ; the second term is a
correction term that will be nonzero if x − h < α ≤ x + h. If C(x) were truncated after
three terms, then this correction term would be the one-dimensional analog (with λ = 0) to
the correction term in (12), and the approximation to uxx would be first-order accurate.

The formula in (A.6) is essentially that derived in [9]. Similar formulas can also be found
in work by Liu and coworkers in [31], by Li and Lai, in [29], and by Wiegmann [51]. The
goal of the present derivations is to make very general use of the idea of extending the
solution smoothly beyond the interface. Here we use it not only to approximate a Laplacian
but also for interpolation, extrapolation, and approximation of boundary conditions.

A.1.2. The Immersed Interface Method in Two Dimensions

The idea above extends to higher dimensions quite naturally. Below, we derive the two-
dimensional analog of the function ũ(x; ξ) and use it to determine extensions to the function
ω, an interpolant for ψ , and correction terms for the discrete operator ∇2 + λ.

Throughout this discussion, we assume that boundaries are parameterized as (X (s), Y (s))
for some parameter s ∈ [0, Smax ]. Again, we assume that we have only one boundary
( parameterized as ((s) = (X (s), Y (s)). The boundary divides the computational do-
main into two regions, !− and !+, where we assume that the !+ region is the flow
domain. The projection s = P((x, y) associates with the point (x, y), a point (X (s), Y (s))
on the interface. For irregular grid points (xi , y j ) it is assumed that the distance between
(X (P((xi , y j )), Y (P((xi , y j )), and (xi , y j ) is O(h). Control point (X (sk), Y (sk) is assumed
to be near a grid point (xik , y jk ).

We begin by introducing several definitions.

DEFINITION. We define the function π(ℓ, m), for ℓ, m ∈ {−1, 0, 1} as

π(ℓ, m) = 3m + ℓ+ 5. (A.7)

This function is used to simply enumerate the grid values in a 3 × 3 box centered at (xi , y j ).
The lower left point (xi−1, y j−1) corresponds to ℓ = −1, m = −1, or π(−1, −1) = 1. The
upper right corner point (xi+1, y j+1) corresponds to ℓ = 1, m = 1, or π(1, 1) = 9.

DEFINITION. The vector Sh[u](x, y) ∈ R
9×1 is defined element-wise as

Rowπ(ℓ,m)(Sh[u](x, y)) = u(x + ℓh, y + mh). (A.8)

The mapping is given in Fig. A1.

DEFINITION. The vectors Vc[u](x, y) and V λ
s [u](s) consist of values of a function

u(x, y) and its derivatives and are defined as

Vc[u] = {u, ux , uy, uxx , uyy, uxy}T , (A.9)

V λ
s [u] = {u, un, us, uss, (un)s, ∇2u + λu}T , (A.10)

where the entries in V λ
s [u] are evaluated at (X (s), Y (s)). The derivatives d(·)/ds and

d2(·)/ds2 in V λ
s [u] denote differentiation with respect to the interface parameter s; the

derivative d(·)/dn is the normal derivative.
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FIG. A1. Mapping Sh[u] that takes grid values in a 3 × 3 stencil box to a 9 × 1 vector.

DEFINITION. The vectors Jc[u](s) and J λs [u](s), both in R
6×1, are vectors of the jumps

in entries in Vc[u](x, y) and V λ
s [u](s) and are defined as

Jc[u] = {[[u]], [[ux ]], [[uy]], [[uxx ]], [[uyy]], [[uxy]]}T , (A.11)

J λs [u] = {[[u]], [[un]], [[us]], [[uss]], [[(un)s]], [[∇2u + λu]]}T , (A.12)

where the jumps are evaluated at (X (s), Y (s)).

DEFINITION. The scalar σ (x, y; ξ, η) is defined as

σ (x, y; ξ, η)

⎧

⎪

⎨

⎪

⎩

1 if(x, y) ∈ !+ and (x + ξ, y + η) ∈ !−

−1 if(x, y) ∈ !− and (x + ξ, y + η) ∈ !+

0 otherwise.

(A.13)

DEFINITION. The vector P(δ1, δ2) ∈ R
1×6 is defined as

P(δ1, δ2) =
[

1, δ1, δ2,
1
2
δ2

1,
1
2
δ2

2, δ1δ2

]

. (A.14)

DEFINITION. The matrix 7′
h(x, y, s) ∈ R

9×6 is defined row-wise as

Rowπ(ℓ,m)(7
′
h(x, y, s)) = σ (x, y; ℓh, mh)P(x + ℓh − X (s), y + mh − Y (s)). (A.15)

DEFINITION. The matrix 7h(x, y) ∈ R
9×6 is defined in terms of 7′

h(x, y, s) as

7h(x, y) ≡ 7′
h(x, y,P((x, y)). (A.16)

DEFINITION. An extension Eh[u](x, y) ∈ R
9×1 of the vector Sh[u](x, y) is defined as

Eh[u](x, y) ≡ Sh[u](x, y) +7h(x, y)Jc[u](X (P((x, y)), Y (P((x, y))). (A.17)
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DEFINITION. The matrix 8λ(s) ∈ R
6×6 is defined as

8λ(s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 Ys/r −Xs/r 0 0 0
0 Xs Ys 0 0 0
0 Xss Yss X2

s Y 2
s 2XsYs

0 σ52 σ53 σ54 σ55 σ56

λ 0 0 1 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.18)

where

σ52 = (rYss − Ysrs)/r2,

σ53 = −(r Xss − Xsrs)/r2,

σ54 = XsYs/r,

σ55 = −XsYs/r,

σ56 =
(

Y 2
s − X2

s

)

/r.

The values Xs, Ys , and higher derivatives are the derivatives of the parameterization
(X (s), Y (s)) of ( evaluated at the point s. Since we do not require an arclength parameter-
ization, we introduce r =√

X2
s + Y 2

s to handle the scaling of the parameterization.
That completes the necessary definitions. We now make the following two remarks:

REMARK. The matrix 8λ is used to convert from Cartesian coordinates to a rotated
coordinate system. Consequently, the following identities hold:

V λ
s [u](s) = 8λ(s)Vc[u](X (s), Y (s)),

J λs [u](s) = 8λ(s)Jc[u](s).
(A.19)

Using the above, we define Eλ
h [u](x, y) in terms of J λs [u](s) as

Eλ
h [u](x, y) ≡ Sh[u](x, y) +7h(x, y){8λ(P((x, y))}−1 J λs [u](P((x, y)). (A.20)

REMARK. The extension Eh[u] is smooth in the sense that if we assume underlying
smooth functions u+(x, y) and u−(x, y) (as we did in the one-dimensional example), we
then have the approximation

Eh[u](x, y) =
{

Sh[u+](x, y) + O(h3) (x, y) ∈ !+

Sh[u−](x, y) + O(h3) (x, y) ∈ !− (A.21)

provided that the point (X (P((x; y)), Y (P((x, y))) is sufficiently close to (x, y). The key
here is that Eh[u] can be used in second-order finite-difference approximations in the same
manner that we used ũ(x; ξ) in the one-dimensional example.

We now turn our attention to the manner in which we extend ω, interpolate ψ , and
determine correction terms.

A.1.2.1. Determining the correction term Dλ[φ](xi , y j ). The approximation to the op-
erator ∇2 + λ of a grid function u(xi , y j ) is defined as

∇2u(xi , y j ) + λu(xi , y j ) ≈ GλEλ
h [u](xi , y j )

= GλSh[u](xi , y j ) + Gλ7h(xi , y j )(8
λ(si j ))

−1 J λs [u](si j ),

(A.22)
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where si j ≡ P((xi , y j ) and Gλ is defined as

Gλ =
[

0,
1
h2

, 0,
1
h2

, −4 − λh2

h2
,

1
h2

, 0,
1
h2

, 0
]

(A.23)

for λ ≤ 0. From this, it is clear that the correction term Dλ[u](xi , y j ) in (12) is given by

Dλ[u](xi , y j ) = dλi j J λs [u](si j )
(A.24)

= Gλ7h(xi , y j )(8
λ(si j ))

−1 J λs [u](si j ).

The coefficients dλi j ∈ R
1×6 in (12) are then given by

dλi j ≡ Gλ7h(xi , y j )(8
λ(si j ))

−1. (A.25)

For points (xi , y j ) away from the boundary, 7h(xi , y j ) ≡ 0 and so the correction term is
zero. The above is a first-order approximation to the operator ∇2 + λ.

A.1.2.2. Extending ω to the no-flow domain. From the above, we can easily define the
extension ofω to partial center-covered cells. Suppose that the point (xi , y j ) is the center of a
partial center-covered cell. We find a point (xi ′ , y j ′ ) in the flow domain such that |i − i ′| ≤ 1
and | j − j ′| ≤ 1. Then, we define the extension to ω as ω̃(xi ′ , y j ′) ∈ R

9×1 as

ω̃(xi ′ , y j ′) ≡ Eλ∗

h [ω](xi ′ , y j ′)
(A.26)

= Sh[ω](xi ′ , y j ′) +7h(xi ′ , y j ′)(8λ∗
(si ′ j ′))−1 J λ

∗

s [ω](si ′ j ′).

The value eT
π(i ′−i, j ′− j)ω̃(xi ′ , y j ′) is the extension of ω to the cell (xi , y j ). In this case, the

coefficients in (39) are given by

ei j = eT
π(i ′−i, j ′− j)7h(xi ′ , y j ′)(8λ∗

(si ′ j ′))−1, (A.27)

where eπ(ℓ,m) is column π(ℓ, m) of the 9 × 9 identity matrix.

A.1.2.3. Interpolating ψ . In order to compute velocities using (35) and (36), we must
have the values ofψ at grid nodes. To obtain these values, we interpolated using cell-centered
values of ψ . Typically, this interpolation will have the form

ψ(xi−1/2, y j−1/2) ≈
1

∑

m=−1

1
∑

ℓ=−1

wℓ,mψi+ℓ, j+m + B[ψ](xi , y j ). (A.28)

With a few exceptions for nodes near the boundary of the computational domain, the weights
wℓ,m do not vary from grid point to grid point. The correction term B[ψ](xi , y j ) is zero
only for points near the solid boundary and has a form analogous to that given in (12). But
because the only nonzero jump in ψ is [[∇2ψ]], we have

B[ψ](xi , y j ) = b6
i j [[∇2ψ]]

= b6
i j [[−ω]] (A.29)

= −b6
i jIi j w,

where the jumps are evaluated at a point si j ≡ P((xi , y j ).
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FIG. A2. Weights for interpolation coefficients W of ψ to grid nodes. The set of weights shown here will
interpolate to the grid node given by the open circle. Interpolation weights for the other three grid nodes are formed
by rotating these weights through the appropriate center axes of symmetry.

To compute the coefficient b6
i j above, we first choose a stencil center from a cell center

neighboring the desired grid node. For all interior grid nodes, we can choose the point
(xi , y j ) as the stencil center for the point (xi−1/2, y j−1/2). Only near the boundary of the
computational domain will we need to choose a different stencil center. We then approximate
ψ at (xi−1/2, y j−1/2) using

ψ(xi−1/2, y j−1/2) ≈ W E0
h[ψ](xi , y j )

= W Sh[ψ](xi , y j ) + W7h(xi , y j )(8
0(si j ))

−1 J 0
s [ψ](si j ), (A.30)

where si j ≡ P((xi , y j ) and the coefficients W ∈ R
1×9 are given in Fig. A2. The coefficients

wℓ,m in (A.28) are exactly the entries of W and are given by

wℓ,m = (W )π(ℓ,m). (A.31)

The scalar b6
i j in (A.29) is given by

b6
i j = W7h(xi , y j )(8

0(si j ))
−1e6. (A.32)

With these coefficients, the formula given in (A.28) is accurate to O(h3). The three other
sets of coefficients corresponding to the remaining three corners of the anchor box result
from reflecting the coefficients in W around the appropriate axis of symmetry. For example,
the coefficients for the point (xi−1/2, y j+1/2) result from swapping top and bottom rows
of W (as the entries of W appear in the stencil in Fig. 2), and the coefficients for point
(xi+1/2, y j−1/2) result from swapping left and right columns of W . Although it appears
that (A.30) always requires a correction term, such terms are only used when the 9-point
stencil intersects the interface; when it is completely on one side of the interface or another,
7h ≡ 0.
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A.1.3. Discretizing the Boundary Conditions

We now switch our emphasis from irregular points (xi , y j ) and an associated interface
point (X (si j ), Y (si j )) to control points (X (sk), Y (sk)) and an associated grid point (xik , y jk ).
This point (xik , y jk ) is a point in the flow domain and is chosen to be no more than a distance
O(h) away from the control point. Some care needs to be taken in choosing these grid
points. In particular, one should avoid choosing the same grid point for multiple control
points, as this will lead to a poorly conditioned matrix in (33). Note that we do not in general
have sk = P((xik , y jk ), since sk may not be in the range of P((xi , y j ), i = 1, . . . Nx , j =
1, . . . Ny . For this reason, we use the definition 7′

h(x, y, s) instead of 7h(x, y), since we
do not want to assume the use of P((x, y). We then assume the use of7′

h in our definitions
of extensions Eh[u] below.

Just as we did above, our approach for determining the correct set of weights needed to
interpolate ψ and ψn to control points (X (sk), Y (sk)) is to apply a set of weights used in
the smooth case to a smooth extension Eh[ψ] of ψ . Suppose that we have a set of weights
αℓ,mk and γ ℓ,mk such that in the absence of any jumps at the interface, we would have

ψ(X (sk), Y (sk)) =
∑

ℓ,m∈{−1,0,1}
αℓ,mk ψik+ℓ, jk+m + O(h3),

(A.33)
ψn(X (sk), Y (sk)) =

∑

ℓ,m∈{−1,0,1}
γ ℓ,mk ψik+ℓ, jk+m + O(h2).

Then we could apply these weights to the extension Eh[ψ](xik , y jk ) and get

ψ(X (sk), Y (sk)) = α̃k Eh[ψ]
(

xik , y jk

)

+ O(h3)

≈ α̃k Sh[ψ]
(

xik , y jk

)

+ α̃k7
′
h

(

xik , y jk , sk
)

Jc[ψ](sk) (A.34)

≈ α̃k Sh[ψ]
(

xik , y jk

)

+ α̃k7
′
h

(

xik , y jk , sk
)

(80(sk))
−1 J 0

s [ψ](sk),

where α̃ ∈ R
1×9, and (α̃k)π(ℓ,m) = αℓ,mk . The same approach can be used to approximateψn

at control point sk , using weights γ̃k ∈ R
1×9.

It is fairly straightforward to compute the coefficients αℓ,mk and γ ℓ,mk , and we do so now.
We begin with a few definitions.

DEFINITION. The matrix 9(δ1, δ2) ∈ R
6×6 is defined as

9(δ1, δ2) ≡

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 δ1 δ2
1
2δ

2
1

1
2δ

2
2 δ1δ2

0 1 0 δ1 0 δ2

0 0 1 0 δ2 δ1

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.35)

We use the abbreviation 9k ≡ 9(xik − X (sk), y jk − Y (sk)).

DEFINITION. The matrix 9h ∈ R
9×6 is defined in a row-wise fashion as

Rowπ(ℓ,m)(9
h) =

[

1, ℓh, mh,
1
2
(ℓh)2,

1
2
(mh)2, (ℓh)(mh)

]

. (A.36)
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With the above definitions, we can write

Sh[u]
(

xik , y jk

)

= 9h9k Vc[u](X (sk), Y (sk)) + O(h3) (A.37)

for a function u which we assume to be smooth, even at the interface (.
These equations represent nine equations in the six unknowns in the vector Vc[u](X (sk),

Y (sk)). To reduce the number of equations in this system to six, we introduce the matrix
Z ∈ R

6×9 with the following two properties:

1. The product Z9h should be nonsingular.
2. The product Zξ , for any vector ξ ∈ R

9×1, should have entries that are O(h p), where
p ≥ 0.

One choice for Z is (9h)T . This leads to a least-squares solution to the vector Vc[ψ](X (sk),

Y (sk)) in (A.37). Another option is to construct a Z which simply chooses six points of the
9-point stencil. This was used in the original immersed interface method. The choice we
use here is

Z =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
1 0 −1 0 0 0 −1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.38)

This choice results in a second-order approximation of the mixed derivative uxy .
Multiplying both sides of (A.37) by a particular choice of Z gives us the six equations

Z Sh[u]
(

xik , y jk

)

= Z9h9k Vc[ψ](X (sk), Y (sk)) + O(h3). (A.39)

Solving for Vc[u](X (sk), Y (sk)) gives us

Vc[u](X (sk), Y (sk)) ≈ (Z9h9k)
−1 Z Sh[u]

(

xik , y jk

)

. (A.40)

But since boundary conditions are in terms of normal derivatives, we multiply both sides
of the above equation by 80(sk) to get

V 0
s [u](sk) ≈ 80(sk)(Z9h9k)

−1 Z Sh[u]
(

xik , y jk

)

. (A.41)

We have

ψ(X (sk), Y (sk)) = eT
1 V 0

s [ψ](sk),
(A.42)

ψn(X (sk), Y (sk)) = eT
2 V 0

s [ψ](sk),

and so the α’s and γ ’s given in (25) and used at the introduction of this section are given by

αℓ,mk = eT
1 8

0(sk)(Z9h9k)
−1 Zeπ(ℓ,m),

γ ℓ,mk = eT
2 8

0(sk)(Z9h9k)
−1 Zeπ(ℓ,m),

(A.43)

where eπ(ℓ,m) is a column in the 9 × 9 identity matrix.
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Using (A.33), we have that the coefficients given in (27) are

c6
k = eT

1 8
0(sk)(Z9h9k)

−1 Z7′
h

(

xik , y jk , sk
)

(80(sk))
−1e6,

(A.44)
c6

n,k = eT
2 8

0(sk)(Z9h9k)
−1 Z7′

h

(

xik , y jk , sk
)

(80(sk))
−1e6.

A.2. Wannier Flow Solution

The coefficients used in Eq. (46) are given in terms of the radii r1 and r2 of the inner
ring and outer ring of the annulus, respectively, the distance e between the centers of the
two rings, the velocities v1 and v2 of the two rings, and the variables d1, d2, and s, given
as

s2 = 1
4e2

(r2 − r1 − e)(r2 − r1 + e)(r2 + r1 + e)(r2 + r1 − e),
(A.45)

d1 = 1
2e

(

r2
2 − r2

1

)

− 1
2

e, d2 = 1
2e

(

r2
2 − r2

1

)

+ 1
2

e.

Using these, we get the coefficients A, B, C, D, E , and F as

A = −1
2
(d1d2 − s2)A1,

A1 =
2
(

d2
2 − d2

1

)

(r1v1 + r2v2)
(

r2
2 + r2

1

)[(

a2
2 + a2

1

)

log{(d1 + s)(d2 − s)/(d1 − s)(d2 + s)} − 4se
]

+
r2

1 r2
2

(

r−1
1 v1 − r−1

2 v2
)

s
(

r2
1 + r2

2

)

(d2 − d1)
,

B = (d1 + s)(d2 + s)A1,

C = (d1 − s)(d2 − s)A1,

D = d1 log{(d2 + s)/(d2 − s)} − d2 log{(d1 + s)/(d1 − s)}(r1v1 + r2v2)
(

r2
2 + r2

1

)[(

a2
2 + a2

1

)

log{(d1 + s)(d2 − s)/(d1 − s)(d2 + s)} − 4se
]

−
2s

[(

r2
2 − r2

1

)

/
(

r2
2 + r2

1

)]

(r1v1 + r2v2)
(

r2
2 + r2

1

)[(

a2
2 + a2

1

)

log{(d1 + s)(d2 − s)/(d1 − s)(d2 + s)} − 4se
]

−
r2

1 r2
2

(

r−1
1 v1 − r−1

2 v2
)

(

r2
1 + r2

2

)

e
,

E = 1/2 log{(d1 + s)(d2 − s)/(d1 − s)(ds + s)}(r1v1 + r2v2)
(

r2
2 + r2

1

)[(

a2
2 + a2

1

)

log{(d1 + s)(d2 − s)/(d1 − s)(d2 + s)} − 4se
] ,

F = e(r1v1 + r2v2)
(

r2
2 + r2

1

)[(

a2
2 + a2

1

)

log{(d1 + s)(d2 − s)/(d1 − s)(d2 + s)} − 4se
] .

A.3. Constants for Complex Domain

The constants a j , p j , and r j for the numerical example in the complex domain are given
in Table A1.
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TABLE A1
Constants Needed to Form Roses Given in Final Numerical Example

j a j p j r j c1
j c2

j

1 0.1057719321071 6 0.5438120613565 1.0837988826816 2.8379888268156
2 0.0446357373219 6 0.5922357710579 2.9050279329609 3.0614525139665
3 0.1174317320178 6 0.5644987493081 2.1229050279330 1.6648044692738
4 0.0502106914425 6 0.4307556381671 0.8156424581006 0.8603351955307
5 0.1173766231097 6 0.4190526007633 3.2737430167598 0.7262569832402
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